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Abstract

We analyze monetary policy in a New Keynesian model with heterogeneous
firms and financial frictions. Firms differ in their productivity and net worth and
face collateral constraints that cause capital misallocation. TFP endogenously
depends on the time-varying distribution of firms. A monetary expansion in-
creases the investment of constrained firms with a high marginal revenue product
of capital (MRPK) relatively more than that of low-MRPK ones, crowding out
the latter and increasing TFP. We provide empirical evidence based on Spanish
granular data supporting this mechanism. This has important implications for
optimal monetary policy design. First, a central bank without pre-commitments
engineers an unexpected monetary expansion to increase TFP in the medium run.
Second, the divine coincidence holds after a demand shock. Third, if nominal rates
are constrained by the zero lower bound, the optimal policy prescribes that rates
should remain low for much longer than under complete markets.
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1 Introduction

Firms’ investment decisions are one of the key transmission channels of monetary policy.
In the presence of firm heterogeneity and financial frictions, the distribution of capital
across firms matters for aggregate productivity, as the literature on capital misallocation
documents. This opens the door to the possibility of monetary policy affecting produc-
tivity through its impact on the endogenous investment decisions of firms, which raises
important questions for policymakers. First, what are the channels through which mon-
etary policy affects capital misallocation and endogenous TFP? Second, how do these
channels modify the optimal conduct of monetary policy? To answer these questions,
we introduce a framework that combines the workhorse model of monetary policy – the
New Keynesian model – with a tractable model of firm heterogeneity in which capital
misallocation arises from financial frictions.

We consider an economy populated by a continuum of firms owned by entrepreneurs,
who have access to a constant returns to scale technology. Entrepreneurs are hetero-
geneous in their net worth and receive idiosyncratic productivity shocks. They face
financial frictions, as they can only borrow subject to a collateral constraint, which
restricts their borrowing to a multiple of their net worth. Entrepreneurs above a cer-
tain idiosyncratic productivity threshold are constrained: they rent as much capital as
possible since their marginal revenue product of capital (MRPK) is higher than their
cost of capital. Entrepreneurs below the threshold are unconstrained: their optimal
size is zero and they decide to lend their net worth to other entrepreneurs. This can be
seen as the limit case of an economy with decreasing returns to scale at the individual
level, in which unconstrained firms are optimally very small and the bulk of production
is carried out by constrained firms. We embed this heterogeneous-firm block into an
otherwise standard continuous-time New Keynesian model. This economy allows for an
aggregate representation akin to that in the standard New Keynesian model with cap-
ital, except that in this case aggregate Total Factor Productivity (TFP) is endogenous
and depends on the distribution of capital across firms.

Our model nests the complete markets New Keynesian model as a particular case. If
the borrowing limit disappears, the most productive firm carries out all the production.
In this case TFP is exogenous and the distribution of net worth across firms does not
affect macroeconomic variables.1

1To be precise, the mean of the distribution, which pins down aggregate capital does, but given a
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Monetary policy affects aggregate TFP in our incomplete-market baseline model by
modifying both the distribution of net-worth across entrepreneurs and the productivity
threshold above which entrepreneurs are constrained. We jointly refer to these two
mechanism as the “misallocation channel of monetary policy”. We calibrate the model
to the US and compute the response to a monetary policy shock when the central bank
follows a Taylor rule. The response of the baseline economy features the same demand
driven expansion as the complete markets economy. However, in the baseline economy,
the shock additionally causes an increase in TFP. This response is in line with empir-
ical evidence (Jordà et al. (2020), Moran and Queralto, 2018; Meier et al., 2020; or
Baqaee et al., 2021), which has explained the link between monetary policy and TFP
through different mechanisms such as endogenous growth through R&D or markup het-
erogeneity. Here, instead, this is the consequence of changes in the capital distribution
across firms. An expansionary monetary policy shock leads high-productivity firms to
increase their investment relatively more than low-productivity ones, crowding out the
latter. This increases the market share of high-productivity firms, thus reducing capital
misallocation.

We present empirical evidence supporting this mechanism. We use micro panel data
of the quasi-universe of Spanish firms during the period 2000-2016, and construct the
monetary policy shocks using the high-frequency event-study approach of Jarociński
and Karadi (2020). We then estimate to what extent the firms’ investment response to
monetary policy shocks depends on firms’ productivity, using an empirical specification
that follows Ottonello and Winberry (2020) closely. We find that high-productivity
firms invest more relative to low-productivity ones in response to an expansionary
monetary policy shock. 2

We turn next to the normative prescriptions of the model. We analyze the Ramsey
problem of a benevolent central bank. This is a nontrivial endeavor, as the net-worth
distribution is an infinite-dimensional state in the central bank’s problem. We introduce
a new algorithm that leverages the computational advantages of continuous time. The
idea is to discretize the continuous-time, continuous-state problem into a discrete-time,
discrete-space one as in Achdou et al., 2017, and then to use symbolic differentiation to

level of aggregate capital, the shape of the distribution is irrelevant at the macro level.
2These findings are in line with those of Caglio et al. (2021) for the US, who find that an expan-

sionary monetary policy shock increases highly levered SMEs’ demand for credit and their borrowing
capacity.
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obtain the first-order conditions of the central bank. This produces a high-dimensional
nonlinear dynamic system, which is efficiently solved using a Newton algorithm in the
sequence space.

The steady-state of the Ramsey plan features zero inflation, as in the complete-
markets case. We study Ramsey optimal policy in the absence of shocks when the
initial state coincides with the zero-inflation steady state and the central bank has no
pre-commitments. Whereas the optimal policy in the case with complete markets is
time consistent, financial frictions introduce a new source of time inconsistency as the
central bank engineers a temporary monetary expansion in the short run while commit-
ting to price stability in the long-run. This strategy allows the central bank to exploit
the misallocation channel, as the monetary expansion gives rise to a temporary, endoge-
nous increase in TFP. The desire of the central bank to redistribute resources towards
productive entrepreneurs in order to promote firm growth is reminiscent of the case with
optimal fiscal policy analyzed by Itskhoki and Moll (2019), who find how optimal fiscal
policy initially redistributes from households towards entrepreneurs to promote capital
accumulation. In our case, and given the lack of time-varying fiscal instruments, it is
the central bank that engineers this redistribution through an expansion in aggregate
demand.

We analyze next the optimal response of monetary policy to shocks from a ’timeless
perspective’ (Woodford, 2003), in which the central bank adopts a behavior to which
it would have wished to commit itself to at a date far in the past. We consider a
temporary demand shock that reduces households’ intertemporal discount rate. In
this case, the optimal response is price stability (zero inflation). This is the same
policy as with complete markets. The “divine coincidence” (Gali, 2008) thus extends
to our model. The implementation of this policy, however, differs in both cases. Under
incomplete markets, the demand shock leads to an endogenous fall in TFP through the
misallocation channel, in line with the findings of Gopinath et al. (2017) or Asriyan
et al. (2021). The fall in TFP, in turn, amplifies the reduction of the natural rate
brought about by the demand shock itself, such that the natural rate drops more than
in the case with complete markets. As real rates mimic natural rates, the result is that
real rates decline more, and more persistently, than in the standard New Keynesian
model.

Finally, we analyze timeless optimal monetary policy when nominal rates are con-
strained by the zero lower bound (ZLB). We consider again a demand shock due to a
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decline in households’ discount rates. The optimal policy, originally proposed by Eg-
gertsson and Woodford (2004), is “low for longer”: nominal rates should remain at the
ZLB longer that what would be prescribed if the ZLB were not present. In the case
with incomplete markets, the larger and more persistent decline in natural rates due to
the endogenous fall in TFP leads to what we call a “low for even longer” optimal policy,
as nominal rates should remain at the ZLB for more than twice the time they do under
complete markets.

Related literature. This paper contributes to several strands of the literature.
First, we contribute to the emerging literature on the role of financial frictions and firm
heterogeneity in monetary policy transmission. Ottonello and Winberry (2020) analyze
the effect of monetary policy on firm investment in a model with endogenous default.
They find that low-risk firms are more responsive to monetary shocks because they face
a flatter marginal cost curve for financing investment. Jeenas (2020) analyzes the role
of firms’ balance sheet liquidity in the transmission of monetary policy to investment.
Koby and Wolf (2020) study the conditions under which the lumpiness of firm-level
investment matters for aggregate investment dynamics and, as an application, analyze
monetary policy transmission with heterogeneous firms. We contribute to this nascent
literature on two fronts. First, we focus on the link between monetary policy and capital
misallocation. Second, we analyze optimal monetary policy in a model with non-trivial
firm heterogeneity.3

Second, our model is related to the extensive literature on capital misallocation, and
the different channels that may affect it, such as Hsieh and Klenow (2009) or Midrigan
and Xu (2014) – see Restuccia and Rogerson (2017) for a review on this literature.
Our paper builds on Moll (2014), who introduces a heterogeneous producer model to
study how the nature of the idiosyncratic shocks impacts the speed of transitions.
We enrich this model by introducing aggregate capital adjustment costs and a New
Keynesian monetary block since our focus is to understand how monetary policy affects
aggregates through its impact on heterogeneous firms.4 Focusing on the impact of lower
interest rates in a small open economy, Reis (2013) and Gopinath et al. (2017) analyze

3Other strands of the literature have analyzed the links between monetary policy and firm hetero-
geneity through heterogeneity in markups and entry-exit (e.g. Meier et al., 2020, Bilbiie et al., 2014,
Zanetti and Hamano (2020), Andrés et al., 2021, Nakov and Webber, 2021 or Baqaee et al., 2021), in
cyclicality (David and Zeke, 2021) or in firm-level productivity trends (Adam and Weber, 2019).

4Buera and Nicolini (2020) employ a discrete-time version of Moll (2014) with cash-in-advance
constraints to analyze the impact of different monetary and fiscal policies after a credit crunch.

4



how an exogenous increase in the availability of cheap foreign funds or an exogenous
decrease in real interest rates may increase capital misallocation among firms facing
financial frictions. Asriyan et al. (2021) extend these results to a general equilibrium
environment. Acharya et al. (2021) analyze the links between zombie lending and
monetary policy. Here, instead, we focus on the interactions between monetary policy
and capital misallocation in a nominal economy with price rigidities.

Third, to the best of our knowledge this is the first paper to analyze optimal policy
at the ZLB with heterogeneous firms. We show that the “low for longer” prescription
highlighted by the literature under complete markets (Eggertsson and Woodford, 2004;
Adam and Billi, 2006 or Nakov et al., 2008) is amplified due to the interaction between
the misallocation channel and the optimal path of interest rates.

Finally, we add to the literature analyzing optimal monetary policies in models with
heterogeneous agents. Nuño and Thomas (2016), Bilbiie and Ragot (2020), Bhandari
et al. (2021), Acharya et al. (2019), Bigio and Sannikov (2021), Dávila and Schaab, 2022
and Le Grand et al. (2020) analyze optimal monetary policy in models with heteroge-
neous households using different techniques. Here, instead, our focus is on heteroge-
neous firms. We propose a novel methodology to compute optimal policies nonlinearly
in models featuring non-trivial heterogeneity, including exogenous borrowing limits or
other nonlinear features. Our algorithm is simple to code and can be easily generalized
to other problems. It can be implemented using several available software packages. In
our case, we employ Dynare.

2 Model

We propose a New Keynesian closed economy model with financial frictions and het-
erogeneous firms based on Moll (2014). Time is continuous and there is no aggregate
uncertainty. Later we discuss how we introduce aggregate shocks. The economy is pop-
ulated by five types of agents: households, the central bank, input-good firms, retail,
and final goods producers. The representative household is composed of two types of
members: workers and entrepreneurs. Workers rent their labor whereas entrepreneurs
operate the input good firms, which combine capital and labor to produce the input
good. Entrepreneurs are heterogeneous in their net worth and productivity. The input
good is differentiated by imperfectly competitive retail goods producers facing sticky
prices, whose output is aggregated by the final goods producer. The latter two firms

5



are standard in New Keynesian models.

2.1 Heterogeneous input good firms

There is a continuum of entrepreneurs. Each entrepreneur owns some net worth, which
they hold in units of capital. They can use this capital for production in their own
input-good producing firm – firm for short – or rent it out to other entrepreneurs.
Similar to Gertler and Karadi (2011), we assume that entrepreneurs are members of
the representative household, to whom they may transfer dividends.5

Entrepreneurs are heterogeneous in two dimensions: their net worth at and in their
idiosyncratic productivity zt.6 Each entrepreneur owns a technology which uses capital
kt and labor lt to produce input good yt:

yt = ft(zt, kt, lt) = (ztkt)
α(lt)

1−α. (1)

The labor share α ∈ (0, 1) is the same across entrepreneurs. Idiosyncratic productivity
zt follows a diffusion process,

dzt = µ(zt)dt+ σ(zt)dWt, (2)

where µ(z) is the drift and σ(z) the diffusion of the process.
Entrepreneurs can use their technology to produce or not. If they do, we say they

run a firm and call them active. If they do not, they lend their net worth to firms
owned by other entrepreneurs. Firms hire workers at the real wage wt and rent capital
at the real rental rate of capital Rt. Capital is rented from the agents which save, i.e.
both households and inactive entrepreneurs. Firms sell the input good at the real price
mt = pyt /Pt, which is the inverse of the gross markup associated to retail products over
input goods, being pyt the nominal price of the input good and Pt the price of the final
good, i.e. the numeraire. Entrepreneurs use the return on their activities to distribute
(non-negative) dividends dt to the household and to invest in additional capital at the

5This assumption is the only relevant difference between the real side of our model and the model of
Moll (2014). We consider it to avoid having to deal with redistributive issues between households and
entrepreneurs when analyzing optimal monetary policy. Both models produce linear dividend policies,
so they can be seen as equivalent from a positive perspective.

6For notational simplicity, we use xt instead of x(t) for the variables depending on time. Further-
more, we suppress the input goods firm’s index.
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real price qt. Capital depreciates at rate δ. An entrepreneur’s flow budget constraint
can be expressed as follows

ȧt =
1

qt

mtft(zt, kt, lt)− wtlt −Rtkt︸ ︷︷ ︸
Firm’s profits

+ (Rt/qt − δ)︸ ︷︷ ︸
Return on net worth

qtat − dt︸︷︷︸
Dividends

 . (3)

Note that we have rearranged the budget constraint to yield the law of motion of net
worth in units of capital.

Entrepreneurs can borrow additional capital bt = kt−at to use in production. How-
ever, they face a collateral constraint, such that the value of capital used in production
cannot exceed γ > 1 of their net worth,

qtkt ≤ γqtat. (4)

Entrepreneurs retire and return to the household according to an exogenous Poisson
process with arrival rate η. Upon retirement they pay all their net worth, valued qtat, to
the household, and they are replaced by a new entrepreneur with the same productivity
level. Entrepreneurs maximize the discounted flow of dividends, which is given by

V0(z, a) = max
kt,lt,dt

E0

ˆ ∞
0

e−ηtΛ0,t

 dt︸︷︷︸
Dividends

+ η qtat︸︷︷︸
Terminal value

 dt, (5)

subject to the budget constraint (3), the collateral constraint (4), and the process
followed by productivity (2). Future profits are discounted by the household’s stochastic
discount factor Λ0,t . Below we show that Λ0,t = e−

´ t
0 rsds, where rt is the real interest

rate.
We can split the entrepreneurs’ problem into two parts: a static profit maximization

problem and a dynamic dividend-distribution problem. First, entrepreneurs maximize
firm profits given their productivity and net worth,

max
kt,lt
{mtft(zt, kt, lt)− wtlt −Rtkt} , (6)

subject to the collateral constraint (4). Since the production function has constant
returns to scale, entrepreneurs find it optimal to operate a firm at the maximum scale
defined by the collateral constraint whenever their idiosyncratic productivity is high
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enough. Else they remain inactive, because they cannot run a profitable firm given
their low productivity. Factor demands and profits of operating firms are thus linear
in net worth, and there exists a productivity cut-off z∗t below which the optimal size of
the firm is k∗(z) = 0, so this entrepreneur is unconstrained. From now on, we refer to
active entrepreneurs as ’constrained’ and to inactive as ’unconstrained’.

Firm’s demand for capital and labor is :

kt(zt, at) =

γat, if zt ≥ z∗t ,

0, if zt < z∗t ,
(7)

lt(zt, at) =

(
(1− α)mt

wt

)1/α

ztkt(zt, at). (8)

Firm’s profits are then given by

Φt(zt, at) = max {ztϕt −Rt, 0} γat, where ϕt = α

(
(1− α)

wt

)(1−α)/α

m
1
α
t , (9)

and the productivity cut-off, above which firms are profitable, is given by

z∗tϕt = Rt. (10)

Second, entrepreneurs decide the dividends dt that they pay to the household. Using
(9), the law of motion of an entrepreneur’s net worth (in units of capital) (3) can be
rewritten as

ȧt =
1

qt
[Φt(zt, at) + (Rt − δqt)at − dt]

=
1

qt
[(γmax {ztϕt −Rt, 0}+Rt − δqt)at − dt] . (11)

The solution to this problem is derived in Appendix A.1. There we show how en-
trepreneurs never distribute dividends until retirement, dt = 0, when they bring all
their net worth home to the household. The intuition is the following. The return on
one unit of capital in the hands of the entrepreneur is at least (Rt − δqt), while for
the household the return of this unit of capital is exactly (Rt − δqt). It is thus always
worthwhile for entrepreneurs to keep their funds. The household collects all these funds
as dividends once the entrepreneur retires. To keep things simple, we assume the rep-
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resentative household uses a fraction ψ ∈ (0, 1) of these dividends to finance the net
worth of the new entrepreneurs, so net dividends are (1−ψ) of the net worth of retiring
entrepreneurs.

2.2 Households

There is a representative household, composed of workers and entrepreneurs, that saves
in capital Dt or in nominal instantaneous bonds whose real value is denoted by BN

t .
Nominal bonds BN

t are in zero net supply. Workers supply labor Lt. The household
maximizes

Wt = max
Ct,Lt,BNt ,Dt

ˆ ∞
0

e−ρ
h
t tu(Ct, Lt)dt. (12)

s.t. Ḋtqt = (Rt − δqt)Dt − SNt − Ct + wtLt + Tt, (13)

ḂN
t = (it − πt)BN

t + SNt ,

where SNt is the investment into nominal bonds and Tt are the profits received by the
household, which is the sum of the profits of the capital producer ([ιtqt − ιt − Ξ (ιt)]Kt),
the profits from retail goods producers (Πt from equation 21) and net dividends received
from entrepreneurs ((1− ψ)ηqtAt).

We assume separable utility of CRRA form, i.e., u(Ct, Lt) =
C1−ζ
t

1−ζ −Υ
L1+ϑ
t

1+ϑ
. Solving

this problem (see Appendix (A.4) for details), we obtain the Euler equation,

Ċt
Ct

=
rt − ρht
ζ

, (14)

the labor supply condition

wt =
ΥLϑt

C−ζt
, (15)

and the Fisher equation
rt = it − πt, (16)

where, for convenience, we have made use of the following definition of the real rate of
interest

rt ≡
Rt − δqt + q̇t

qt
, (17)

which equals the real return on capital adjusted by capital gains and depreciation.
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Integrating the Euler equation (14), we can verify that the stochastic discount factor
Λ0,t can be defined as

Λ0,t ≡ e−
´ t
0 ρ

h
t ds

u′c (Ct)

u′c (C0)
= e−

´ t
0 rsds.

2.3 Final good producers

As usual in New Keynesian models, a competitive representative final goods producer
aggregates a continuum of output produced by retailer j ∈ [0, 1],

Yt =

(ˆ 1

0

y
ε−1
ε

j,t dj

) ε
ε−1

, (18)

where ε > 0 is the elasticity of substitution across goods. Cost minimization implies

yj,t (pj,t) =

(
pj,t
Pt

)−ε
Yt, where Pt =

(ˆ 1

0

p1−ε
j,t dj

) 1
1−ε

.

2.4 Retailers

Following Ottonello and Winberry (2020) and Jeenas (2020), we differentiate between
heterogeneous input-good firms and retailers. We assume that monopolistic competition
occurs at the retail level. Retailers purchase input goods from the input-good firms,
differentiate them and sell them to final good producers. Each retailer j chooses the
sales price pj,t to maximize profits subject to price adjustment costs as in Rotemberg
(1982), taking as given the demand curve yj,t (pj,t) and the price of input goods, pyt .
We assume the government pays a proportional constant subsidy τ on input good, so
that the net real price for the retailer is m̃t = mt(1− τ). This subsidy is financed by a
lump-sum tax on the retailers Ψt.7 The adjustment costs are quadratic in the rate of
price change (ṗj,t/pj,t) and expressed as a fraction of output (Yt),

Θt

(
ṗj,t
pj,t

)
=
θ

2

(
ṗj,t
pj,t

)2

Yt,

where θ > 0. Suppressing notational dependence on j, each retailers chooses {pt}t≥0

to maximize the expected profit stream, discounted at the stochastic discount factor of

7This fiscal scheme is introduced to eliminate the distortions caused by imperfect competition in
steady state, as common in the optimal policy literature.
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the household, ˆ ∞
0

Λ0,t

[
Πt (pt)−Θt

(
ṗt
pt

)]
dt, (19)

where

Πt (pt) =

(
pt
Pt
− m̃t

)(
pt
Pt

)−ε
Yt −Ψt

are per-period profits gross of price adjustment costs.
The symmetric solution to the pricing problem yields the New Keynesian Phillips

curve (see Appendix A.2), which is given by(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε
. (20)

where πt denotes the inflation rate πt = Ṗt/Pt. We exploit the fact that, given the
lack of aggregate risk, the household’s stochastic discount factor can be expressed as
Λ0,t = e−

´ t
0 rsds (see derivation in Section 2.2). The total profit of retailers, net of the

lump-sum tax, which is transferred to the households lump sum, is

Πt = (1−mt)Yt −
θ

2
π2
t Yt. (21)

2.5 Capital producers

A representative capital producer owned by the representative household produces cap-
ital and sells it to the household and the firms at price qt, which she takes as given. Her
cost function is given by (ιt + Ξ (ιt))Kt where ιt is the investment rate and Ξ (ιt) is a
capital adjustment cost function. She maximizes the expected profit stream, discounted
at the stochastic discount factor of the household. Profits are paid to the household.

Wt = max
ιt,Kt

ˆ ∞
0

Λ0,t (qtιt − ιt − Ξ (ιt))Ktdt. (22)

s.t. K̇t = (ιt − δ)Kt. (23)
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The optimality conditions imply (see Appendix A.3)

rt = (ιt − δ) +
q̇t − Ξ′′ (ιt) ι̇t
qt − 1− Ξ′ (ιt)

− qtιt − ιt − Ξ (ιt)

qt − 1− Ξ′ (ιt)
.

2.6 Distribution

As previously explained, we assume that, for each entrepreneur returning to the house-
hold, a new entrepreneur arrives operating the same technology, that is, with the same
productivity level. This new entrepreneur receives a startup capital stock from the
household in a lump-sum fashion, equal to a fraction ψ < 1 of the net worth of the
entrepreneur she replaces. Let Gt(z, a) be the joint distribution of net worth and pro-
ductivity. The evolution of its density gt(z, a) is given by the Kolmogorov Forward
equation

∂gt(z, a)

∂t
= − ∂

∂a
[gt(z, a)st(z)a]︸ ︷︷ ︸

Retained earnings

− ∂

∂z
[gt(z, a)µ(z)] +

1

2

∂2

∂z2
[gt(z, a)σ2(z)]︸ ︷︷ ︸

Productivity changing randomly

−ηgt(z, a)︸ ︷︷ ︸
Entrepreneurs retiring

+
η

ψ
gt(z,

a

ψ
))︸ ︷︷ ︸

Entrepreneurs entering

, (24)

where st(z) is the entrepreneurs’ investment rate (11)

st(z) ≡ 1

qt
( γmax {ztϕt −Rt, 0}︸ ︷︷ ︸
Profit rate from operating the firm

+Rt − δqt), (25)

and 1/ψgt(z, a/ψ) is the density of new entrepreneurs entering.
Using this two-dimensional distribution we can define the one-dimensional distribu-

tion of net-worth shares as ωt(z) ≡ 1
At

´∞
0
agt(z, a)da. This distribution measures the

share of net worth held by entrepreneurs with productivity z. It contains all the relevant
information in a more compact form, which is why we shall work with it. Given this
definition and the structure of the problem, net-worth shares are non-negative, contin-
uous, once differentiable everywhere and they integrate up to 1. The law of motion of
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net worth shares is given by (see in Appendix A.5)

∂ωt(z)

∂t
=

[
st(z)− Ȧt

At
− (1− ψ)η

]
ωt(z)− ∂

∂z
µ(z)ωt(z) +

1

2

∂2

∂z2
σ2(z)ωt(z). (26)

2.7 Market Clearing and Aggregation

Market clearing. Define aggregate capital used in production asKt =
´
kt(z, a)dGt(z, a),

aggregate firm net worth as At =
´
atdGt(z, a), and aggregate net debt as Bt =´

bt(z, a)dGt(z, a). Since the capital borrowed by an individual entrepreneur equals
that used in production minus its net worth bt = kt − at, we have that

Kt = At +Bt, (27)

Asset market clearing requires that net borrowing of entrepreneurs Bt equals net savings
of the household Dt,

Bt = Dt. (28)

Let Ω(z) be the cumulative distribution of net-worth shares, i.e. Ωt(z) =
´ z

0
ωt (x) dx.

By combining equations (27), (28), aggregating capital used by firms (7), and solving
for At, we obtain

At =
Dt

γ(1− Ωt(z∗t ))− 1
. (29)

Labor market clearing implies

Lt =

ˆ ∞
0

lt(z, a)dGt(z, a). (30)

Aggregation. Aggregating up, one can express output as a function of aggregate
factors and aggregate TFP

Yt = ZtK
α
t Lt

1−α, (31)

where aggregate TFP Zt is an endogenous variable given by

Zt =
(
Eωt(·) [z | z > z∗t ]

)α
=

(´∞
z∗t
xωt (x) dx

1− Ωt(z∗t )

)α

. (32)

This highlights that, in terms of output, the model is isomorphic to a standard representative-
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agent New Keynesian model with capital and TFP Zt. TFP is endogenous and evolves
over time and, as we will discuss below, depends on monetary policy.

Note that TFP Zt serves as a measure of misallocation. The financial frictions
faced by entrepreneurs imply that capital is not optimally allocated. The entrepreneur
operating the most productive firm does not have enough net worth to operate the
whole capital stock, hence less productive firms operate as well, which is suboptimal
and which reduces TFPZt. Thus the more misallocated capital is, the lower is TFP Zt.

Factor prices are

wt =(1− α)mtZtK
α
t Lt

−α, (33)

Rt =αmtZtK
α−1
t Lt

1−α z∗t
Eωt(·) [z | z > z∗t ]

. (34)

Finally, the law of motion of the aggregate net-worth of entrepreneurs is given by

Ȧt
At

=
1

qt

[
γ(1− Ωt(z

∗
t ))
(
αmtZtK

α−1
t Lt

1−α −Rt

)
+Rt − δqt − qt(1− ψ)η)

]
. (35)

Appendix A.6 derives step by step these aggregate formulae.

2.8 Central Bank

The central bank controls nominal interest rates it on nominal bonds held by households.
For the positive analysis in Section 3 we assume that the central bank sets the nominal
rate according to a Taylor rule of the form form

di = −υ
(
it −

(
ρh + φ (πt − π̄) + π̄

))
dt, (36)

where π̄ is the inflation target, φ is the sensitivity to inflation deviations and υ is a
parameter related to the persistence. For the normative analysis in Section 4 we assume
that the central bank implements the Ramsey-optimal policy.
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3 Monetary policy transmission

3.1 Numerical solution and calibration

Numerical algorithm. We solve the model numerically using the a new method,
described in Appendix C.3. It combines a discretization of the model using an upwind
finite-difference method similar to the one in Achdou et al. (2017) with a Newton algo-
rithm that computes non-linear transitional dynamics. This can be easily implemented
using Dynare’s perfect foresight solver. Notice that the variables of the model include
the distribution ω(z), which is an infinite-dimensional object. The finite-difference
discretization turns this continuous variable into a finite dimensional vector.

It is important to highlight that our solution approach is different from the one
in Winberry (2018) or Ahn et al. (2018). These papers analyze heterogeneous-agent
models with aggregate shocks building on the seminal contribution by Reiter (2009).
To this end, they linearize the model around the deterministic steady state. Winberry
(2018) illustrates how this can be also implemented using Dynare and Ahn et al. (2018)
extend the methodology to continuous-time problems. Here, instead, we compute the
nonlinear transitional dynamics in the the sequence space, as Boppart et al. (2018) or
Auclert et al. (2019). Boppart et al. (2018) show how the perfect-foresight transitional
dynamics to a (small) MIT shock, such as the ones we compute here, coincide with
the impulse responses obtained by a first-order perturbation approach in the model
with aggregate uncertainty. We solve the model using a Newton solver. An important
technical difference with Auclert et al. (2019) is that we do not guess a path of prices
and iterate over time to find the path of all other variables, but we update all variables
in a single step.

Calibration. Table 1 summarizes our calibration. The rate of time preference of
the household ρh is 0.025, which targets an average real rate of return of 2.5 percent.
The capital depreciation rate δ is set at 0.065, equal to the aggregate depreciation rate
in NIPA. The fraction of assets of exiting entrepreneurs reinvested (ψ) is 0.1, so that
the average size of entrants is 10 percent of that of incumbents, in line with US data
(OECD, 2001). Entrepreneurs’ exit rate (η) is 0.12 which, together with ψ, implies an
average real return on equity of 11 percent, the return of the S&P500 from 2009 to
2019. The borrowing constraint parameter γ is 1.43, implying that entrepreneurs can
borrow up to 43% of their net worth, which targets the level of aggregate US corporate
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debt as a percentage of net worth from 2009 to 2019. The capital share α is set at a
standard value of 0.3. We assume log-utility in consumption (ζ = 1) and the inverse
Frisch elasticity ϑ is also set to 1, standard values in the literature. We normalize the
constant multiplying the disutility of labor Υ such that aggregate labor supply in steady
state is equal to one.

We assume adjustment costs are quadratic, i.e.,

Ξ (ιt) =
φk

2
(ιt − δ)2 . (37)

Capital adjustment costs, φk, are set to 10, such that the peak response of investment
to output after a monetary policy shock is around 2, in line with the VAR evidence of
Christiano et al. (2016).

Regarding the New Keynesian block, the elasticity of substitution of retailer goods
ε is set to 10, so that the steady state mark-up is 1/(ε − 1) = 0.11. The Rotemberg
cost parameter θ is set to 100, so that the slope of the Phillips curve is ε/θ = 0.1 as in
Kaplan et al. (2018)

The Taylor rule parameters take the following values: π̄ = 0, φ = 1.25 and υ = 0.8.
These values are explained when dealing with the optimal policy in Section 4.2 below.

We assume that individual productivity z in logs follows an Ornstein-Uhlenbeck
process8

d log(z) = −ςz log(z)dt+ σzdWt. (39)

We calibrate the productivity process using the estimates from Gilchrist et al. (2014),
who find a quarterly persistence of 0.8 and a volatility of 0.15 (0.3 annualized).

3.2 Misallocation and monetary policy

In this section we show the impulse response functions to a monetary policy shock
and a demand shock when the central bank follows a Taylor rule. We compare our
baseline heterogeneous-firm economy to that in the complete-market economy. The
complete-market economy is the standard representative agent New Keynesian model

8By Ito’s lemma, this implies that z in levels follows the diffusion process

dz = µ(z)dt+ σ(z)dWt, (38)

where µ(z) = z
(
−ςz log z + σ2

2

)
and σ(z) = σzz.
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Table 1: Calibration

Parameter Value Source/target
ρh Household’s discount factor 0.025 Av. 10Y bond return of 2.5% (FRED)
δ Capital depreciation rate 0.065 Aggregate depreciation rate (NIPA)
ψ Fraction firms’ assets at entry 0.1 Av. size at entry 10% (OECD, 2001)
η Firms’ death rate 0.12 Av. real return on equity 11% (S&P500)
γ Borrowing constraint parameter 1.43 Corporate debt to net worth of 43% (FRED)
α Capital share in production function 0.3 Standard
ζ Relative risk aversion parameter HH 1 Log utility in consumption
ϑ Inverse Frisch Elasticity 1 Kaplan et al. (2018)
Υ Constant in disutility of labor 0.71 Normalization L = 1

φk Capital adjustment costs 10 VAR evidence
ε Elasticity of substitution retail goods 10 Mark-up of 11%
θ Price adjustment costs 100 Slope of PC of 0.1
π̄ Inflation target 0 -
φ Slope Taylor rule 1.25 -
υ Persistence Taylor rule 0.8 -

SS Aggregate Productivity 1 Normalization
ςz Mean reverting parameter 0.8 Persistence Gilchrist et al. (2014)
σz Volatility of the shock 0.30 Volatility Gilchrist et al. (2014)
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with capital. It can be seen as a special case of the baseline economy where the collateral
constraint is set to infinite, so that the productivity/net-worth distribution becomes
irrelevant and only the most productive firm operates. In this case, capital allocation
is efficient (no misallocation) and TFP is exogenous. This contrasts with the baseline
economy, in which the distribution of capital across firms matters due to financial
frictions and determines the endogenous component of TFP. See Appendix A.9 for
more details regarding the baseline versus complete-market model.

Impulse response to a monetary policy shock. We start our analysis of the
model with the response to an expansionary monetary policy shock. The blue solid
lines in Figure 1 show the response to a temporary 20 basis points reduction in the
nominal rate (not shown). The shock produces a temporary fall in the nominal rate
(not shown) which leads to a reduction in the real rate (panel d) and an increase in
inflation and output (panels a and f) through the standard New Keynesian channels.

Note that, compared to the complete markets economy, the responses of infla-
tion, price of input goods or wages (panels a-c) is very similar. Nonetheless, in the
heterogeneous-firms economy these movements in prices allow high-productivity en-
trepreneurs to increase their investment relatively more, so that endogenous TFP in-
creases (panel g). This is in line with the empirical evidence based on time series
analysis, such as the one provided by Jordà et al. (2020), Moran and Queralto (2018),
Meier et al. (2020) or Baqaee et al. (2021), among others. These papers explain the
dynamics of TFP as the result of endogenous growth, hysteresis effects, or heterogeneity
in markups. Here, instead, we focus on a complementary mechanism, namely capital
misallocation. This increase in TFP, although moderate, allows the increase in output
to be slightly larger in the baseline economy (panel f) than in the complete-markets
case. The difference between both economies is larger in the medium term (2-4 years
after impact), due to the persistence in TFP dynamics.

The misallocation channel of monetary policy. Why does TFP change in
response to a monetary policy shock? As discussed above, aggregate TFP depends
on the allocation of net-worth across entrepreneurs. In particular, by equation (32)
which we reproduce here, TFP is given by the average productivity of constrained
entrepreneurs, weighted by net worth shares:

Zt =
(
Eωt(·) [z | z > z∗t ]

)α
. (40)
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Figure 1: Impulse response to a monetary shock.
Notes: The figure shows the deviations from steady state of the economy. The solid blue line is the response of the
baseline economy to a monetary policy shock of 25 basis points. The orange dotted line is the response in the complete
markets economy to the same 25 basis point decrease in nominal rates. In both cases the central bank follows the Taylor
rule.
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(a) Productivity-threshold channel. (b) Net-worth channel

Figure 2: Net-worth distribution and productivity-threshold channels.
Notes: The figure shows the net-worth share distribution ω (z) and the productivity-threshold z∗ (blue). The light blue
area is the initial mass of constrained firms. Panel (a) shows the impact of a change in the threshold channel (orange
dashed line), which shifts the threshold to the left. Panel (b) shows the impact of a change in the net-worth distribution,
i.e. the net-worth channel. The new mass of constrained firms after the change is depicted by the shaded orange area in
both panels.

TFP Zt thus depends on the mass of the net-worth distribution ωt (·) above the pro-
ductivity threshold z∗t (the shaded area in Figure 2). Entrepreneurs to the left of z∗

stay at their optimal size k(z)∗ = 0, and rent out their net worth to constrained en-
trepreneurs to the right of the cut-off (those in the shaded area). Equation (40) allows
us to identify the two sub-channels through which monetary policy affects aggregate
TFP: (i) the productivity-threshold channel, related to changes in the threshold; and
(ii) the net-worth distribution channel, related to changes in the net-worth distribution.
We jointly refer to them as the “misallocation channel of monetary policy”

Productivity threshold channel . The productivity-threshold channel captures the
fact that, by changing factor prices, monetary policy affects the productivity threshold
above which entrepreneurs become constrained. Panel (a) in Figure 2 illustrates how a
reduction in the threshold increases the share of constrained firms by crowding in low-
productivity entrepreneurs. Analytically, take the partial derivative of TFP (equation
32) with respect to z∗t , we obtain

∂Zt
∂z∗t

=
αω (z∗t )

Z
1−α
α

t (1− Ωt (z∗t ))

(
Eωt(·) [z | z > z∗t ]− z∗t

)
> 0. (41)
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The derivative of TFP with respect to the threshold is always non-negative, and it is
strictly positive as long as the distribution ω(z) is non-zero for z > z∗t . This means that,
ceteris paribus, if the threshold decreases so does TFP. This is the result of a larger
share of capital in the hands on low-productivity entrepreneurs. Note that the term(
Eωt(·) [z | z > z∗t ]− z∗t

)
is a measure of the dispersion of productivity of constrained

firms: the larger the difference between the average productivity of constrained firms
and the productivity threshold, the larger the impact of a change in the threshold is.

Combining equation (10) with the definitions (9) and (17), we can express the
productivity threshold as

z∗t =
(qtrt + δqt − q̇t)

α
(

(1−α)
wt

)(1−α)/α

m
1
α
t

.

This equation reflects how the threshold is affected by monetary policy through changes
in factor prices. Panel (h) in Figure 1 shows how, in response to a monetary policy
shock, the threshold increases. This contributes positively to the the increase in TFP.

The interpretation of the productivity threshold channel is the following. As dis-
cussed by Moll (2014), the assumption of constant return to scale in firms’ production
function (1) can be seen as the limiting case of decreasing returns to scale (DRS),
yt = [(ztkt)

α(lt)
1−α]

ν
, ν < 1, when ν → 1. In the case with DRS, there is a threshold

z∗ (a) which depends on net-worth, such that for those firms with z ≤ z∗ (a) , the firm
is unconstrained and it produces at its optimal level (k∗(z)), whereas for those with
z > z∗ (a) , the firm is constrained. When ν → 1, the optimal size of the firm, and
hence its production, are very small, k∗(z), y∗(z) → 0. Hence, both in the DRS and
in the limiting case of CRS, the productivity threshold channel modifies the share of
constrained versus unconstrained firms in the economy. This mechanism is different
from the extensive margin mechanism. Hence, it is not meant to capture firm entry
and exit, which in our model is exogenously given by the retiring probability η.

Net-worth distribution channel. So far, we have implicitly kept the net worth distri-
bution constant. But by changing firms’ profits and investment, monetary policy also
affects the dynamics of the net-worth distribution, and hence of aggregate TFP through
equation (40). Changes in this distribution, such as shifts or changes in skewness or
kurtosis, can change this conditional mean. Panel (b) of Figure 2 illustrates the effect
of a rightward shift and tilt in the distribution.

On impact, the only operating channel is the productivity-threshold one, as the
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net-worth distribution is predetermined. The net-worth distribution channel thus only
affects TFP as time goes by.

Appendix A.8 derives two results concerning this channel. First, we show how,
conditional on a constant cut-off z∗, only changes in the wage wt, price of capital qt,
and input-good price mt affect TFP dynamics. The intuition for this result is that
all constrained firms benefit the same from lower capital costs. Second, we prove how
the sign of the impact on TFP growth of a change in each of these prices depends
exclusively on the effect of the price on the firm’s excess investment rate, defined as

Φ̃t(z) ≡ γΦt

qtkt
= max

{
γα

qt

(
(1− α)

wt

)(1−α)/α

m
1
α
t (z − z∗t ) , 0

}
, (42)

where we have employed the definition of profits Φt (equation 9), as well the defini-
tions of the rental rate Rt and the threshold z∗t (equations 17 and 10, respectively).
Notice that Φt/kt is the return that a firm makes over the cost of capital Rt. Since
entrepreneurs do not distribute dividends until they retire, these returns are reinvested
in firms’ capital. Hence we can understand Φ̃t(z) as the investment rate of a firm with
productivity z in excess of the investment rate of the marginal firm with productiv-
ity z∗.9 The excess investment rate captures the heterogeneity in investment across
productivity levels. Its shape informs us about how the net worth distribution evolves
over time and hence, ceteris paribus, how TFP does. The steeper it is, the more do
high-productivity firms outgrow low-productivity ones, and the faster increases TFP.

Panel (i) in Figure 1 shows that the slope of the excess investment rate increases
after a monetary expansion. High-productivity firms thus invest relatively more than
low-productivity ones.

Impulse response to a demand shock. Can we then conclude that a reduction in
real rates reduces misallocation? Not necessarily. This can be seen in Figure 3, where
we display the impulse responses to a demand shock that temporarily reduces real
rates. In particular, we consider a temporary decrease in households’ discount factor ρh

calibrated to match the decline in real rates on impact of the expansionary monetary
policy shock. In contrast to the case of a monetary policy shock, TFP now decreases
(panel g), reflecting an increase in misallocation. Since a decrease in ρht implies that
the household becomes more patient, consumption decreases and savings (in capital)

9Note that the investment rate of the marginal firm with productivity z∗ is equal to Ra
k = R/γ.
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Figure 3: Impulse response to a a demand shock.
Notes: The figure shows the deviations from steady state of the economy. The solid blue line is the response of the
baseline economy to a 20% decrease of the discount factor of the household, ρhht , that reverts to its steady state value
following an autoregressive process with yearly persistence of 0.8. The dotted orange line is the response of the complete
market economy to the same shock. In both cases the central bank follows the Taylor rule.

increase. This triggers price adjustments of the same sign as the monetary policy shock
(panels b-e). However, the difference in magnitudes of these price movements implies
that TFP now falls as misallocation increases through both the productivity-threshold
and the net-worth distribution channels (panels h-i). This result is in line with the
findings of Gopinath et al. (2017) or Asriyan et al. (2021), who show how a decline in
the real rate may produce an increase in capital misallocation.

3.3 Empirical evidence: the effect of monetary policy shocks at

firm level

As discussed above, the positive impact of monetary policy shocks on TFP can be
rationalized by different explanations, such as endogenous growth or markup hetero-
geneity. In our case, it is due to the fact that a larger share of capital is in the hands of
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high-productivity firms. This is both the result of a higher productivity threshold and
more investment by high-productivity firms. While the first channel has a less obvious
mapping to the data, the second one can be empirically tested.

To this end, we combine Spanish firm-level panel data with a time series measure
of exogenous monetary policy shocks. We use yearly balance-sheet and cash-flow data
from the quasi-universe of Spanish firms from 2000 to 2016 from the Central de Balances
Integrada (see Appendix B.1 for further details on the data). The main advantage of
this dataset is that it covers the quasi-universe of Spanish firms, including not only
large firms with access to stock and bond markets, but also medium and small firms
more reliant on bank credit and internal financing. This contrasts with most papers in
this literature, which use data from publicly traded firms (e.g. Compustat). These are
generally large firms with access to the equity market, which can potentially behave
very differently from the rest of firms in the economy. 10

Our key variable of interest is firm level productivity, which we proxy by the marginal
revenue product of capital (MRPKj,t−1). In our context, this measure has two advan-
tages compared to other empirical productivity measures. First, it is a measure directly
linked to capital productivity, and hence to investment in capital. Furthermore, in the
model the MRPK is proportional to firm productivity z.

MRPKt =
∂mtft(z, k, l

∗)

∂k
=

[(
1− α
wt

) 1−α
α

m
1
α
t

]
z ∝ z.

Second, its computation from the data is straightforward and it does not rely on esti-
mation. The monetary policy shock εMP

t is taken from Jarociński and Karadi (2020).
They use high-frequency data and sign restrictions in a SVAR to identify monetary
policy shocks in the Euro area at the monthly frequency. The key idea behind their
identification strategy is that movements of interest rates and stock markets within
a narrow window around monetary policy announcements can help disentangle mone-
tary policy shocks from information surprises. While an unexpected policy tightening
raises interest rates and reduces stock prices, a positive central bank information shock
(i.e. unexpected positive assessment of the economic outlook) raises both. We need
to aggregate their shocks to yearly frequency, as in our data. To do so, we follow a

10Caglio et al. (2021), for instance, show how monetary policy transmission and risk taking differ
across SMEs and large listed firms.
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methodology that resembles the one employed by Ottonello and Winberry (2020) to ag-
gregate to quarterly frequency. Appendix B.2 provides more details on the construction
of the monetary policy shock.

In order to test whether high-productivity firms’ investment is more responsive to
monetary policy shocks, we estimate the following equation:

∆log kj,t = αj + αs,t + β (MRPKj,t−1 − Ej [MRPKj ]) ε
MP
t + Λ′Zj,t−1 + uj,t. (43)

The dependent variable ∆log kj,t is the log increase in the capital stock of firm j from
t−1 to t. The key parameter of interest in equation (43) is the coefficient β multiplying
the interaction term between productivity and the monetary policy shock . We demean
MRPKj,t−1 by the firm average across time Ej [MRPKj] to ensure that the results
are not driven by permanent heterogeneity in responsiveness across firms. We lag
MRPKjt−1 to address reverse causality concerns. A positive value of β indicates that
high-productivity firms’ investment responds more to a monetary expansion. We also
include firm fixed effects (αj) to capture permanent differences in investment patterns,
sector-year fixed effects (αs,t) to control for aggregate shocks at the sector level, and
a vector of lagged controls Zj,t−1 that includes the demeaned MRPK measure, total
assets, sales growth, leverage, net financial assets as a share of total assets, and the
interaction of demeaned MRPK with GDP growth.

We follow Ottonello and Winberry (2020) in both preparing and cleaning the data
set (see Appendix B.1 for details) and in designing the estimation equation (43), where
we just switch the variable of interest. In doing so we aim to maximize transparency
and comparability with previous studies.

Table 2 shows the main results of the estimation. We perform the same normal-
ization as in Ottonello and Winberry (2020), so that the coefficient of interest, β, is
easily interpretable. First, we standardize (MRPKjt−1 − Ej [MRPK]) over the entire
sample, which implies that the units are standard deviations in our sample. Second,
we normalize the shock, so that the interpretation of β can be read as the response
to an expansionary monetary policy shock of 100bps (or in other words, a decrease
of 1pp in the EONIA rate). Results show that firms with high productivity, proxied
by high MRPK, respond more to expansionary monetary policy shocks. Our baseline
specification, column (2), shows that a surprise reduction of 1pp in real interest rates
(expansionary monetary policy shock) implies a further 29pp increase in the investment
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Table 2: Heterogeneous responses of investment to monetary policy in MRPK

(1) (2)

εMP1
t x MRPKt−1 0.141∗∗ 0.293∗∗∗

(0.06) (0.07)

Observations 5,567,706 4,169,950
R2 0.267 0.285
MRPK control YES YES
Controls NO YES
Time-sector FE YES YES
Time-sector clustering YES YES

Notes: The table shows the coefficient β that results of estimating equation (43). Column (1) only includes the
standardized demeaned MRPK as control, while column (2) introduces the all the controls Zj,t−1 (standardized
demeaned MRPK, total assets, leverage, sales growth, and net financial assets as a share of total assets; and the
interaction of demeaned MRPK with GDP growth). Standard errors are clustered at the sector-year level. We have
normalized the sign of the monetary shock εMP

t so that a positive shock corresponds to a decrease in interest rates. We
have standardize (MRPKjt−1 − Ej [MRPK]) over the entire sample.

rate of a firm that is one standard deviation more productive than the average in our
sample (in terms of MRPK). When we do not include firm controls (column 1), this
effect is still positive and significant, although of lower magnitude. Appendix B.3 shows
that the result is robust to several alternative specifications. It is worth noticing that
this heterogeneous response is not driven by changes in the composition of firms in the
data, since keeping a balanced sample of firms we find even larger results (see Appendix
B.3).

Summing up, the empirical evidence supports the model prediction that the impact
of monetary policy on investment is increasing in the productivity of the firm. Albrizio
et al. (2021) show that, after an expansionary monetary policy shock, aggregate mea-
sures of misallocation decrease. This provides further evidence pointing at a decrease in
misallocation as the net effect of the different general equilibrium forces after an expan-
sionary monetary policy shock. This result is key to understand how firm heterogeneity
shapes optimal monetary policy in the next section.
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4 Optimal monetary policy

4.1 Central bank objective and numerical approach

Ramsey problem. Having analyzed the interactions between monetary policy, firm
heterogeneity and financial frictions, we turn next to the main focus of this paper,
namely how these interactions affect optimal monetary policy. We assume that the
central bank sets its policy instrument – the nominal interest rate it – such as to
maximize household utility under full commitment. That is, the central bank solves
the following Ramsey problem:

max
{ωt(z),st(z),wt,rt,qt,ϕt,Kt,At,Lt,Ct,Dt,Zt,Ωt,z∗t ,ιt,πt,mt,m̃t,it,Yt,Tt}t≥0

E0

ˆ ∞
0

e−ρ
htu(Ct, Lt)dt (44)

subject to the all the equilibrium conditions derived above and listed in Appendix A.7
and the initial conditions {ω0(z), K0, Z0}. The equilibrium conditions include, among
others, the law of motion of the net-worth distribution ωt(z) (equation 26), as the
central bank internalizes the impact of her decisions on it. We stress the fact that the
central bank’s only instrument is the nominal interest rate. For simplicity, we calibrate
the labor tax/subsidy τ such that it undoes the New Keynesian mark-up distortion in
the steady state.

Numerical approach. Notice that ωt(z) and st(z) not only depend on time, but
also on individual productivity. This poses a challenge when solving optimal monetary
policy, as we need to compute the first order conditions (FOCs) with respect to infinite-
dimensional objects. There are a number of proposals in the literature to deal with this
problem. Bhandari et al. (2021) make the continuous cross-sectional distribution finite-
dimensional by assuming that there are N agents instead of a continuum. They then
derive standard FOCs for the planner. In order to cope with the large dimensionality
of their problem, they employ a perturbation technique. Le Grand et al. (2020) employ
the finite-memory algorithm proposed by Ragot (2019). It requires changing the origi-
nal problem such that, after K periods, the state of each agent is reset. This way the
cross-sectional distribution becomes finite-dimensional. Nuño and Thomas (2016) deal
with the full infinite-dimensional problem in continuous time. This implies that the con-
tinuous Kolmogorov forward (KF) and the Hamilton-Jacobi-Bellman (HJB) equations
form part of the constraints faced by the central bank. They derive the planner’s FOCs

27



using calculus of variations, thus expanding the original problem to also include the
Lagrange multipliers. They then solve the problem using the upwind finite-difference
method of Achdou et al. (2017).

Here we proposed a new algorithm, detailed in in Appendix D. We first discretize the
central bank’s objective and constraints (the private equilibrium conditions) using finite
differences, then find the planner’s FOCs by symbolic differentiation and finally solve
them non-linearly in the sequence space. The first step (discretization using finite dif-
ferences) was already described in Section 3.1 and Appendix C. The idea is to transform
the original continuous-time, continuous-state planner’s problem into a discrete-time,
discrete-space one. This problem is high-dimensional, as infinite-dimensional objects
become large vectors. The second and third steps can conveniently be implemented
using several available software packages. In our case, we employ Dynare.11 This al-
gorithm can be employed to compute optimal policies in a large class of heterogeneous
agent models and stands out for being extremely easy to implement.

4.2 Optimal Ramsey policy

Steady state. We first consider the steady state of the Ramsey problem. It is well
known that the standard New Keynesian economy with an efficient steady state features
zero inflation in steady state under the optimal policy. Due to capital misallocation,
our baseline economy does not feature steady state efficiency. Yet, inflation is zero in
the steady state of the Ramsey problem. This result mirrors a similar result from the
textbook New Keynesian model with a distorted steady state (Woodford, 2003; Gali,
2008). Though the long-run Phillips curve allows monetary policy to affect misallo-
cation in the long run through positive trend inflation, the benefits of this policy are
compensated for by the cost of the anticipation of this policy.

Time-0 optimal policy. We turn next to the deterministic dynamics under the
Ramsey optimal plan. We solve for the Ramsey plan when the initial state of the
economy coincides with the steady state under the optimal policy, i.e., that with zero
inflation. As explained in the previous section, the Ramsey planner faces no pre-
commitments, which is equivalent to assume that the Lagrange multipliers associated
to the forward-looking variables are initially zero. This is commonly referred to as the
"time-0 optimal policy" (Woodford, 2003).

11Dynare includes the command ramsey−policy that automatically performs these steps.
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Figure 4: Time 0 optimal monetary policy.
Notes: The figure shows the deviations from steady state of the economy when the planner is allowed to re-optimize
with no pre-commitments in response to no shock. The baseline economy is the solid blue line, and the complete
markets economy (CM) the dashed orange line. The dotted yellow line is the response of the baseline model in
general equilibrium to a monetary policy shock of 700 basis points, where the central bank follows the Taylor rule
di = −υ

(
it −

(
ρht + φ (πt − π̄) + π̄

))
dt, with υ = 0.8, and φ = 1.25.
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The Ramsey plan in the model with complete markets is time-consistent. Hence,
inflation and the rest of variables remain constant at their steady state values. This
is displayed by the dashed red lines in Figure 4. Market incompleteness, however,
introduces a new motive for time inconsistency, urging the central bank to temporally
deviate from the zero-inflation policy. The solid blue lines in Figure 4 show how the
central bank engineers a surprise monetary expansion, by reducing real rates (panel b).
The dotted yellow line displays a monetary policy rule with the same calibration as in
Section 3.2. The calibration of the policy rule was chosen to replicate the dynamics
of the optimal monetary policy. The resulting dynamics are almost identical to those
caused by an expansionary monetary policy shock, which were described in detail in
Section 3.2: the change in factor prices increases TFP (panel c). The central bank is
thus willing to tolerate a temporary increase in inflation to achieve a persistent rise in
TFP, brought about by a more efficient allocation of capital.

The desire of the central bank to redistribute resources towards entrepreneurs in or-
der to promote firm growth is reminiscent of the case with optimal fiscal policy analyzed
by Itskhoki and Moll (2019). They find that optimal fiscal policies in economies starting
at below steady-state net-worth levels initially redistributes from households towards
entrepreneurs in order to speed up net worth accumulation. In our case, and given
the lack of fiscal instruments, it is the central bank who engineers this redistribution
through an expansion in aggregate demand.

4.3 Timeless optimal policy response

Next, we analyze the optimal policy response when an unexpected shock hits the econ-
omy that was previously in its zero-inflation steady state. In this case, we adopt a
"timeless perspective" (Woodford, 2003, Gali, 2008). The optimal timeless Ramsey
policy implies that the central bank sticks to its pre-commitments, implementing the
policy that it would have chosen to implement if it had been optimizing from a time
period far in the past. The Lagrange multipliers associated to forward-looking equa-
tions in this case are initially set to their steady state values.12 This is a concept that

12Dynare allows to compute optimal policies from a timeless perspective. First, the ramsey−model

command computes the FOCs for the Ramsey problem by symbolic differentiation. Second, the steady
command computes the steady state of the Ramsey problem. Finally, the perfect−foresight−solver
command uses the Newton method to solve simultaneously all the non-linear equations for every period,
using sparse matrices.
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only makes sense in the presence of aggregate risk. As discussed in Section 3.1, building
on the argument by Boppart et al. (2018) one can reinterpret the timeless response to
MIT shocks as a first order approximation to the response in a model with aggregate
uncertainty under the ex-ante optimal time-invariant state-contingent policy rule.

Demand shock. We analyze the optimal response to a demand shock, modeled
as a temporary fall in the household’s discount factor of 20%. Figure 5 shows that the
optimal response in the baseline economy (blue solid line) mimics that under complete
markets (orange dashed line).

The response both with complete and incomplete markets is characterized by what
Gali (2008) described as “divine coincidence”: the optimal response by the central bank
is to stabilize inflation at its steady state value of zero (panel a), which also keeps
the output gap at its optimal steady state value of zero (panel d).13 This, however,
requires that the central bank lowers the real and nominal rates more aggressively in
the baseline with incomplete markets (panel b). The reason is that the original demand
shock leads to a negative ’supply shock’ through its impact on aggregate TFP (panel
c), which depresses output and natural rates relative to the complete markets case. As
the central bank has to replicate the path of natural rates (not shown), it is forced to
reduce real rates more persistently than with complete markets.

In contrast to these results, if the central bank follows a suboptimal Taylor rule, as
in Figure (3) above, the central bank reduces rates by less, and hence inflation increases
in comparison to the optimal policy.

Zero lower bound. The fact that the central bank responds more persistently to
the demand shock under the optimal policy has important implications when the zero
lower bound constrains its room for maneuver. Figure 6 displays the optimal response
from a timeless perspective to a large negative demand shock that forces nominal rates
to hit the zero lower bound (ZLB). The optimal response under complete markets was
originally analyzed by Eggertsson et al. (2003). It prescribes a “low for longer” strategy,
namely that nominal rates (dashed orange line in panel a) should remain at the ZLB
for a longer period that would be prescribed in the absence of the ZLB (dotted yellow
line). This delay in the lift-off date of nominal rates is of one quarter, approximately,
and nominal rates abandon the ZLB in the three quarters after the shock arrival.

This contrasts with the case with the baseline economy with incomplete markets.

13The output gaps is defined as the difference between observed output and the counterfactual output
in an economy without nominal rigidities.
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Figure 5: Optimal monetary policy response to a demand shock.
Notes: The figure shows the optimal response from a timeless perspective (in deviations from steady state) to a 20%
decrease in the rate of time preference of the household ρh that is mean reverting with a yearly persistence of 0.8. The
baseline economy is the solid blue line, and the complete markets economy (CM) the dashed orange line. The dotted
yellow line is the response of the baseline model when the path of inflation is that of the complete markets economy.
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Figure 6: Optimal monetary policy response to a demand shock with the zero lower
bound.
Notes: The figure shows the optimal response from a timeless perspective (in deviations from steady state) to a 4pp
decrease in the rate of time preference of the household ρh that is mean reverting with a yearly persistence of 0.8. The
baseline economy with the zero lower bound is the solid blue line, and the complete markets economy with he zero lower
bound is the dashed orange line. The dotted light blue line is the optimal response in the baseline economy without
zero lower bound, and the yellow dotted line is the optimal response in the complete markets economy without the zero
lower bound..
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This case is also characterized by a low for longer optimal policy (solid blue line in panel
a), but the lift-off date is now delayed by more than twice later than with complete
markets, happening at the end of the second year after the shock. We call this a “low
for even longer” policy. There are two reasons for this delay. First, as discussed above,
natural rates fall more persistently in the case with incomplete markets, and so do
nominal rates under the optimal policy without the ZLB (dotted light blue line). This
explains a delay of a year and a quarter. Second, the delay in the lift-off with respect
to the counterfactual no-ZLB case is also amplified in this case, in order to compensate
for the larger decline in real rates that could not be attained due to the presence of the
ZLB.

5 Conclusions

This paper analyzes monetary policy in a model with heterogeneous firms, financial
frictions, and nominal rigidities. The model features a link between monetary policy
and capital misallocation. Monetary policy affects aggregate misallocation by changing
(i) the productivity threshold above which firms are credit-constrained, and (ii) the
net-worth distribution of firms. We find that expansionary monetary policy reduces
capital misallocation by allowing high-productivity firms to increase investment and
grow faster. Using granular information about Spanish firms, we provide empirical
evidence that this mechanism is indeed present in the data: high-productivity firms are
more responsive to monetary policy shocks.

We analyze optimal monetary policy for a benevolent central bank. We show how a
central bank without pre-commitments engineers an unexpected monetary expansion to
increase TFP in the medium run. We also illustrate how, when faced with a temporary
demand shock, price stability is the optimal policy, just as under complete markets. If
the ZLB constraints the path of nominal rates, then the optimal policy is a “low for
even longer”, delaying the lift-off in nominal rates much longer than under complete
markets.

The paper also makes a methodological contribution. It introduces a new algorithm
to compute optimal policies in heterogeneous-agent models. The algorithm leverages
the numerical advantages of continuous time and will allow researchers to solve optimal
policy in heterogeneous-agent models with or without aggregate shocks in an efficient
and simple way using Dynare.
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Finally, the model presented in this paper abstracts from several relevant mech-
anisms driving firm dynamics, such as endogenous default, size-varying capital con-
straints, or decreasing returns to scale, among many others. This helps us to provide a
clear understanding of the different forces linking monetary policy with capital misal-
location, as well as highlighting the similarities and differences with the standard New
Keynesian model. A natural extension would be to add more of these features to study
their impact on the optimal conduct of monetary policy.
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Online appendix

A Further details on the model

A.1 Entrepreneur’s intertemporal problem

The Hamilton-Jacobi-Bellman (HJB) equation of the entrepreneur is given by

rtVt(z, a) = max
dt≥0

dt + sat (z, a, d)
∂V

∂a
+ µ(z)

∂V

∂z
+
σ2(z)

2

∂2V

∂z2
+ η (qtat − Vt(z, a)) +

∂V

∂t
.

We guess and verify a value function of the form Vt(z, a) = κt (z) qta. The first order
condition is

κt (z)− 1 = λd and min{λd, dt} =0,

where λd = 0 if κt(z) = 1. If κt(z) > 1 ∀z, t, then dt = 0 and the firm does not pay
dividends until it closes down. If this is the case, then the value of κt (z) can be obtained
from

(rt + η)κt (z) qt =

ηqt + (γmax {ztϕt −Rt, 0}+Rt − δqt)κt (z) + µ(z)qt
∂κt
∂z

+
σ2(z)

2
qt
∂2κt
∂z2

+
∂ (qtκt)

∂t
.

(45)

Lemma. κt (z) > 1 ∀z, t
Proof. The drift of the entrepreneur’s capital holdings is

sat =
1

qt
[(γmax {ztϕt −Rt, 0}+Rt − δqt] ≥

Rt − δqt
qt

which is expected to hold with strict inequality eventually if ∃ P (zt ≥ z∗t ) > 0 (which
is satisfied in equilibrium since z is unbounded), and hence

E0at = E0a0e
´ t
0 s

a
udu > a0e

´ t
0
Rs−δqs
qs

ds. (46)
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The value function is then

κt0 (z) qt0at0 = Vt0(z, at0)

= Et0
ˆ ∞

0
e
−
´ t
t0

(rs+η)ds
(dt + ηqtat) dt

≥ Et0
ˆ ∞

0
e
−
´ t
t0

(rs+η)ds
ηqtatdt = Et0

ˆ ∞
0

e

−
´ t
t0


rs︷ ︸︸ ︷

Rs − δqs + q̇s
qs

+η

ds
ηqtatdt

= Et0
ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs
qs

+η
)
ds−log

qt
qt0 ηqtatdt = Et0

ˆ ∞
0

e
−
´ t
t0

(
Rs−δqs
qs

+η
)
ds
ηqt0atdt

> Et0
ˆ ∞

0
e
−
´ t
t0

(
Rs−δqs
qs

+η
)
ds
ηqt0at0e

´ t
0
Rs−δqs
qs

ds
dt =

ˆ ∞
0

e−ηtηqt0at0dt = qt0at0 ,

where in the first equality we have employed the linear expression of the value function,
in the second equation (5), in the third the fact that dividends are non-negative, in the
fourth the definition of the real rate 17 and in the last line the inequality (46). Hence
κt0 (z) > 1 for any t0.

A.2 New Keynesian Philips curve

The proof is similar to that of Lemma 1 in Kaplan et al. (2018). The Hamilton-Jacobi-
Bellman (HJB) equation of the retailer’s problem is

rtV
r
t (p) = max

π

(
p− P y

t (1− τ)

Pt

)(
p

Pt

)−ε
Yt −

θ

2
π2Yt + πp

∂V r

∂p
+
∂V r

∂t
,

where where V r
t (p) is the real value of a retailer with price p. The first order and

envelope conditions for the retailer are

θπYt = p
∂V r

∂p
,

(r − π)
∂V r

∂p
=

(
p

Pt

)−ε
Yt
Pt
− ε

(
p− P y

t (1− τ)

Pt

)(
p

Pt

)−ε−1
Yt
Pt

+ πp
∂2V r

∂p2
+
∂2V r

∂t∂p
.
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In a symmetric equilibrium we will have p = P , and hence

∂V r

∂p
=

θπYt
p

, (47)

(r − π)
∂V r

∂p
=

Yt
p
− ε

(
p− P y

t (1− τ)

p

)
Yt
p

+ πp
∂2V r

∂p2
+
∂2V r

∂t∂p
.

Deriving (47) with respect to time gives

πp
∂2V r

∂p2
+
∂2V r

∂t∂p
=
θπẎ

p
+
θπ̇Y

p
− θπ2Y

p
,

and substituting into the envelope condition and dividing by θY
p

we obtain(
r − Ẏ

Y

)
π =

1

θ

(
1− ε

(
1− P y

t (1− τ)

p

))
+ π̇.

Finally, rearranging we obtain the New Keynesian Phillips curve(
r − Ẏ

Y

)
π =

ε

θ

(
1− ε
ε

+ m̃

)
+ π̇.

A.3 Capital producers’ problem

The problem of the capital producer is

Wt = max
ιt,Kt

E0

ˆ ∞
0

e−
´ t
0 rsds (qtιt − ιt − Ξ (ιt))Ktdt. (48)

K̇t = (ιt − δ)Kt, (49)

We construct the Hamiltonian

H = (qtιt − ιt − Ξ (ιt))Kt + λt (ιt − δ)Kt

with first-order conditions

(qt − 1− Ξ′ (ιt)) + λt = 0 (50)
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(qtιt − ιt − Ξ (ιt)) + λt (ιt − δ) = rtλt − λ̇t (51)

Taking the time derivative of equation (50)

λ̇t = − (q̇t − Ξ′′ (ιt) ι̇t)

which, combined with (51), yields

(qtιt − ιt − Ξ (ιt))− (qt − 1− Ξ′ (ιt)) (ιt − δ − rt) = (q̇t − Ξ′′ (ιt) ι̇t)

Rearranging we get

rt = (ιt − δ) +
q̇t − Ξ′′ (ιt) ι̇t
qt − 1− Ξ′ (ιt)

− qtιt − ιt − Ξ (ιt)

qt − 1− Ξ′ (ιt)
.

A.4 Household’s problem

We can rewrite the household’s problem as

Wt = max
Ct,Lt,Dt,BNt ,S

N
t

E0

ˆ ∞
0

e−ρ
h
t t

(
C1−ζ
t

1− ζ
−Υ

L1+ϑ
t

1 + ϑ

)
dt. (52)

s.t. Ḋt =
[
(Rt − δqt)Dt + wtLt − Ct − SNt + Πt

]
/qt, (53)

ḂN
t = SNt + (it − πt)BN

t , (54)

where SNt is the investment into nominal bonds.
The Hamiltonian is

H =

(
C1−ζ
t

1− ζ
−Υ

L1+ϑ
t

1 + ϑ

)
+%t

[(
(Rt − δqt)Dt + wtLt − Ct − SNt + (qtιt − ιt − Φ (ιt))Kt + Πt

)
/qt
]

+ ηt
[
SNt + (it − πt)BN

t

]
The first order conditions are

C−ζt − %t/qt = 0 (55)
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−ΥLϑt + %twt/qt = 0 (56)

− %t/qt + ηt = 0 (57)

%̇t = ρht %t − %t (Rt − δqt) /qt (58)

η̇t = ρht ηt − ηt [(it − πt)] (59)

(55) and (56) combine to the optimality condition for labor

wt =
Lϑt
C−ηt

,

(55) can be rewritten as

%t = C -η
t qt

Now take derivative with respect to time

%̇t = −ηC -η-1
t Ċtqt + C -η

t q̇t

and plug this into (58) and rearrange to get the first Euler equation

Ċt
Ct

=

Rt−δqt+q̇t
qt

− ρht
η

(57) can be rewritten as
ηt = %t/qt

Now take derivative with respect to time

η̇t =
%̇tqt − %tq̇

q2
t

Use these two expressions and the definition of %̇t in (59) to get the second Euler
equation

Ċt
Ct

=
(it − πt)− ρht

η
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Combining the two Euler equations, we get the Fisher equation

Rt − δqt + q̇t
qt

= (it − πt)

Finally using the definition of rt ≡ Rt−δqt+q̇t
qt

we can rewrite the first Euler equation and
the Fisher equation as in the main text.

A.5 Distribution

The joint distribution of net worth and productivity is given by the Kolmogorov Forward
equation

∂gt(z, a)

∂t
= − ∂

∂a
[gt(z, a)st(z)a]− ∂

∂z
[gt(z, a)µ(z)]+

1

2

∂2

∂z2
[gt(z, a)σ2(z)]−ηgt(z, a)+η/ψgt(z, a/ψ),

(60)
where 1/ψgt(z, a/ψ) is the distribution of entry firms.

To characterize the law of motion of net-worth shares, defined as ωt(z) = 1
At

´∞
0
agt(z, a)da,

first we take the derivative of ωt(z) wrt time

∂ωt(z)

∂t
= − Ȧt

A2
t

ˆ ∞
0

agt(z, a)da+
1

At

ˆ ∞
0

a
∂gt(z, a)

∂t
da. (61)

Next, we plug in the derivative of gt(z, a) wrt time from equation(60) into equation
(61),

∂ωt(z)

∂t
= − Ȧt

A2
t

ˆ ∞
0

agt(z, a)da+
1

At

ˆ ∞
0

a

(
− ∂

∂a
[gt(z, a)st(z)a]

)
da

− ∂

∂z
µ(z)

1

At

ˆ ∞
0

agt(z, a)da+
1

2

∂2

∂z2
σ2(z)

1

At

ˆ ∞
0

agt(z, a)da

− 1

At

ˆ ∞
0

ηagt(z, a)da+
1

At

ˆ ∞
0

ηa/ψgt(z, a/ψ)da.

Using integration by parts and the definition of net worth shares, we obtain the second
order partial differential equation that characterizes the law of motion of net-worth
shares,
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∂ωt(z)

∂t
=

[
st(z)− Ȧt

At
− (1− ψ)η

]
ωt(z)− ∂

∂z
µ(z)ωt(z) +

1

2

∂2

∂z2
σ2(z)ωt(z). (62)

The stationary distribution is therefore given by the following second order partial
differential equation,

0 = (s(z)− (1− ψ)η)ω(z)− ∂

∂z
µ(z)ω(z) +

1

2

∂2

∂z2
σ2(z)ω(z). (63)

Remember that sat (zt, at, ct) = 1
qt

[Φt(zt, at) + (Rt − δqt)at], since entrepreneurs dis-
tribute zero dividends while constrained.

A.6 Market clearing and aggregation

Define the cumulative function of net-worth shares as

Ωt(z) =

ˆ z

0

ωt(z)dz. (64)

Using the optimal choice for kt from equation (7), we obtain

Kt =

ˆ
kt(z, a)dGt(z, a) =

ˆ ∞
z∗t

ˆ
γa

1

At
gt(z, a)dadzAt = γ(1− Ω(z∗t ))At. (65)

By combining equations (27), (28) and (65), and solving for At,we obtain

At =
Dt

(1− Ω(z∗t ))− 1
, (66)

Labor market clearing implies

Lt =

ˆ ∞
0

lt(z, a)dGt(z, a). (67)

Define the following auxiliary variable,

Xt ≡
ˆ ∞
z∗t

zωt(z)dz = E [z | z > z∗t ] (1− Ω(z∗t )). (68)

Using labor demand from (8) , Xt and using the definition of ϕt, we obtain
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Lt =

ˆ ∞
0

(
ϕt
αmt

) 1
1−α

ztγatdGt(z, a) =

(
ϕt
αmt

) 1
1−α

γAtXt. (69)

Plugging in (8) into production function (1), and using again the definition of shares,
we obtain

Yt =

ˆ
ztϕt
αmt

γa︸ ︷︷ ︸
yt(z,a)

dGt(z, a) =
ϕt
αmt

XtγAt = ZtA
α
t Lt

1−α, (70)

where in the last equality we have used equation (69), and we have defined

Zt = (γXt)
α . (71)

Aggregate profits of retailers are given by

ΦAgg
t =

ˆ
γmax {ztϕt −Rt, 0} atdGt(z, a) = [ϕtXt −Rt (1− Ω(z∗))] γAt. (72)

We can also write the aggregate production in terms of physical capital,

Yt = ZtK
α
t Lt

1−α, (73)

where the TFP term Zt is defined as

Zt =

(
Xt

(1− Ω(z∗t ))

)α
= (E [z | z > z∗t ])

α . (74)

Aggregating the budget constraint of all input good firms, using the linearity of
savings policy (11) and using (66), we obtain

Ȧt =

ˆ
ȧdG(z, a, t)− η

ˆ
(1− ψ)atdG(z, a, t) =

=

ˆ ∞
0

1

qt
(γmax {ztϕt −Rt, 0}+Rt − δqt − qt(1− ψ)η)atdG(z, a),

Dividing by At both sides of this equation, using the definition of net worth shares and
the fact that these integrate up to one, we obtain

Ȧt
At

=
1

qt
(γϕtXt −Rtγ(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (75)
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Using the definition of Xt, and substituting ϕt using equation (69), we can simplify
equation (75) as

Ȧt
At

=
1

qt
(αmtZtAt

α−1Lt
1−α −Rtγ(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (76)

Finally, we can obtain factor prices

wt =(1− α)mtZtAt
αLt

−α (77)

Rt =αmtZtA
α−1
t Lt

1−α z∗t
γX t

(78)

where wages come from substituting the definition of ϕt into equation (69); and interest
rates come from plugging in the wage expression (77) into the cut-off rule (10) and using
equation (66). We could equivalently write equation (78) in terms of real rate of return
rt :

rt =
1

qt

(
αmtZtA

α−1
t Lt

1−α z∗t
γX t

)
− δ +

q̇

qt
(79)

We can easily get these equations in terms of capital instead of net worth by simply
using equation (65), i.e. At = Kt

γ(1−Ω(z∗t ))
, and using that E [z | z > z∗t ] = Xt

(1−Ω(z∗t ))
=´∞

z∗t
zωt(z)dz

(1−Ω(z∗t ))
(see equation (71) and (74)).

A.7 Full set of equations

The competitive equilibrium economy is described by the following 22 equations, for the
22 variables {ω(z), s(z), w, r, q, ϕ,K,A, L,C,D,Z,E [z | z > z∗t ] ,Ω, z

∗, ι, π,m, m̃, i, Y, T}.
Remember that µ(z) = z

(
−ςz log z + σ2

2

)
and σ(z) = σzz, and that government bonds

are in zero net supply (BN
t = 0, hence Xt = 0). Except from the last equation (Taylor

rule), the other 21 equations are the constraints of the Ramsey problem described in
Section 2.8.

49



∂ωt (z)

∂t
=

(
st(z)− (1− ψ)η − Ȧt

At

)
ωt (z)− ∂

∂z
[µ(z)ωt (z)] +

1

2

∂2

∂z2

[
σ2(z)ωt (z)

]
st(z) =

1

qt
(γmax {ztϕt −Rt, 0}+Rt − δqt)

Ωt(z
∗) =

ˆ z∗

0

ωt (z) dz

ϕt = α

(
(1− α)

wt

)(1−α)/α

m
1
α
t

m̃t = mt(1− τ)

wt = (1− α)mtZ̃tKt
αLt

−α

Rt = αmtZ̃tK
α−1
t Lt

1−α z∗t
E [z | z > z∗t ]

Ȧt
At

=
1

qt

[
γ(1− Ω(z∗t ))

(
αmtZtK

α−1
t Lt

1−α −Rt

)
+Rt − δqt − qt(1− ψ)η)

]
Kt = At +Dt

K̇t = (ιt − δ)Kt

At =
Dt

γ(1− Ω(z∗t ))− 1

Z̃t = (E [z | z > z∗t ])
α

E [z | z > z∗t ] =

´∞
z∗t
zωt(z)dz

(1− Ω(z∗t ))

Ċt
Ct

=
rt − ρht
η

wt =
ΥLϑt
C−ηt

Ḋt = [(Rt − δqt)Dt + wtLt − Ct + Tt] /qt

rt = it − πt

rt =
Rt − δqt + q̇t

qt

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt))(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε

Yt = ZtK
α
t Lt

1−α

Tt = (1−mt)Yt −
θ

2
π2
t Yt + (1− ψ)ηAt +

[
ιtqt − ιt −

φk

2
(ιt − δ)2

]
Kt

di = −υ
(
it −

(
ρht + φ (πt − π̄) + π̄

))
dt.
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A.8 The net-worth channel of monetary policy

TFP is given by equation (32)

Zt =

(´∞
z∗t
zωt (z) dz´∞

z∗t
ωt (z) dz

)α

.

As the distribution ωt (z) is predetermined at time t, the net-worth channel does not
operate on impact. It may affect, however, TFP dynamics. We compute the growth
rate of TFP keeping z∗ constant as

1

Zt

dZt
dt

∣∣∣∣
z∗

=
d logZt
dt

∣∣∣∣
z∗

= α

[
d

dt

(
log

ˆ ∞
z∗t

zωt (z) dz

)
− d

dt

(
log

ˆ ∞
z∗t

ωt (z) dz

)]∣∣∣∣∣
z∗

=

´∞
z∗
zω̇t (z) dz´∞

z∗t
zωt (z) dz

−
´∞
z∗
ω̇t (z) dz´∞

z∗t
ωt (z) dz

.

The derivative of with respect to a price xt = {rt, wt,mt, qt} is

∂

∂xt

d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z ∂ω̇t(z)

∂xt
dz´∞

z∗t
zωt (z) dz

−
´∞
z∗

∂ω̇t(z)
∂xt

dz´∞
z∗t
ωt (z) dz

,

where

∂ω̇t (z)

∂xt

∣∣∣∣
z∗

=
∂

∂xt

(
Φ̃t(z) + Ξ̃t

)∣∣∣∣
z∗
ω (z) ,

Φ̃t(z) = max

{
γα

qt

(
(1− α)

wt

)(1−α)/α

m
1
α
t (z − z∗) , 0

}
,

Ξ̃t =
Rt − δqt

qt
− Ȧt
At
− (1− ψ)η = −

γ(1− Ωt(z
∗))
(
αmtZtK

α−1
t Lt

1−α −Rt

)
qt

.

Then we have:

∂

∂xt

d logZt
dt

∣∣∣∣
z∗

=

´∞
z∗
z ∂Φ̃(z)

∂xt
ωt (z) dz´∞

z∗t
zωt (z) dz

−
´∞
z∗

∂Φ̃(z)
∂xt

ωt (z) dz´∞
z∗t
ωt (z) dz

+
∂Ξ̃t

∂xt

(´∞
z∗
zωt (z) dz´∞

z∗t
zωt (z) dz

−
´∞
z∗
ωt (z) dz´∞

z∗t
ωt (z) dz

)
︸ ︷︷ ︸

0

.
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This expression shows how only the excess investment rate Φ̃(z) matters to understand
the impact of changes in prices on the growth rate of TFP.

In the case of the real rate (direct effect), xt = rt, we have ∂Φ̃t(z)
∂rt

∣∣∣
z∗

= 0, and
∂Ξ̃t
∂Rt

∣∣∣
z∗

= γ(1− Ωt(z
∗)), thus

∂

∂rt

d logZt
dt

∣∣∣∣
z∗

= 0.

This implies that changes in the real rate do not affect the growth rate of TFP.

In the case of the wage, xt = wt, we have ∂Φ̃t(z)
∂wt

∣∣∣
z∗

= −γ(1−α)
qtwt

(
(1−α)
wt

)(1−α)/α

m
1
α
t (z − z∗) <

0, and ∂Ξ̃t
∂wt

∣∣∣
z∗

= 0, thus

∂

∂wt

d logZt
dt

∣∣∣∣
z∗

= −γ(1− α)

qtwt

(
(1− α)

wt

)(1−α)/α

m
1
α
t

(´∞
z∗

(z − z∗) zωt (z)´∞
z∗t
zωt (z) dz

−
´∞
z∗

(z − z∗)ωt (z)´∞
z∗t
ωt (z) dz

)
.

To uncover the sign, we analyze the term
´∞
z∗

(z − z∗) zωt (z)´∞
z∗t
zωt (z) dz

−
´∞
z∗

(z − z∗)ωt (z)´∞
z∗t
ωt (z) dz

=

´∞
z∗
z2ωt (z)´∞

z∗t
zωt (z) dz

−
´∞
z∗
zωt (z)´∞

z∗t
ωt (z) dz

.

We define ω̄t(z) ≡ ωt(z)´∞
z∗ ωt(z)dz

Iz>z∗ and ω̃t(z) ≡ zωt(z)´∞
z∗ ωt(z)zdz

Iz>z∗ . These are continuous
probability density functions over the domain [z∗,∞), as they are non-negative and
sum up to 1. They satisfy the monotone likelihood ratio condition as

I (z) =
ω̃t(z)

ω̄t(z)
= z

´∞
z∗
zωt (z) dz´∞

z∗
ωt (z) dz

is non decreasing. This implies that function ω̃t(z) dominates ω̄t(z) first-order stochas-
tically. Hence
´∞
z∗
zωt (z)´∞

z∗t
ωt (z) dz

= Eω̄t(z) [z] =

ˆ ∞
z∗

zω̄t(z)zdz <

ˆ ∞
z∗t

zω̃t (z) dz = Eω̃t(z) [z] =

´∞
z∗
z2ωt (z)´∞

z∗t
zωt (z) dz

.

The sign of a change in wages on TFP growth thus coincides with that of the excess
investment rate:

∂Φ̃t(z)

∂wt

∣∣∣∣∣
z∗

< 0⇒ ∂

∂wt

d logZt
dt

∣∣∣∣
z∗
< 0.
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It is trivial to check that the same happens in the case of other prices, mt, qt, that
is, that the sign of their impact on TFP growth is captured by the slope of the ex-
cess investment rate Φ̃t(z). Take, for instance, input prices. We have ∂Φ̃t(z)

∂mt

∣∣∣
z∗

=

γ
qt

(
(1−α)
wt

)(1−α)/α

m
1−α
α

t (z − z∗) > 0, and ∂Ξ̃t
∂mt

∣∣∣
z∗

= −γ(1−Ωt(z∗))αZtK
α−1
t Lt1−α

qt
, thus

∂

∂mt

d logZt
dt

∣∣∣∣
z∗

=
γ

qt

(
(1− α)

wt

)(1−α)/α

m
1−α
α

t

(´∞
z∗

(z − z∗) zωt (z)´∞
z∗t
zωt (z) dz

−
´∞
z∗

(z − z∗)ωt (z)´∞
z∗t
ωt (z) dz

)
> 0.

A.9 Baseline vs complete markets

In this appendix we want to highlight the differences between the model presented in
this paper and the standard representative agent New Keynesian model with capital
(complete markets). Note first that the baseline economy collapses to the standard
complete market economy if the collateral constraint is made infinitely slack (assuming
that the support of entrepreneurs productivity distribution is bounded above). In that
case entrepreneurial net worth becomes irrelevant and only the entrepreneur with the
highest level of productivity zt produces, since she can frictionlessly rent all the capital
in the economy. Her productivity determines aggregate productivity Zt = (zmaxt )α.In
contrast, in the baseline model with incomplete markets, entrepreneurs’ firms can only
use capital up to a multiple γ of their net worth , i.e. γat ≤ kt . Thus entrepreneurs
need to accumulate net worth (in units of capital) to alleviate these financial frictions.
Hence, in the baseline model, the distribution of aggregate capital across entrepreneurs
and the representative household matters and aggregate productivity depends on the
expected productivity of constrained firms, Z = (E [z | z > z∗t ])

α. The rest of the agents
(retailers, final good producers, capital producers) are identical in both economies.

Below we report the equilibrium conditions in the complete markets economy. Com-
paring them with those of the baseline economy reveals that they are identical up to
the fact that in the baseline Z̃t is endogenous (and determined by a bunch of extra
equations) and up to a term in the condition equating the rental rate of capital Rt with
the marginal return on capital.

The competitive equilibrium of the complete market model with capital consists of
the following equations 16 equations, for the 16 variables {w, r, q, ϕ,K, L, C,D, Z, ι, π,m, m̃, i, Y, T}:
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ϕt = α

(
(1− α)

wt

)(1−α)/α

m
1
α
t

m̃t = mt(1− τ)

wt = (1− α)mtZ̃tKt
αLt

−α

Rt = αmtZ̃tK
α−1
t Lt

1−α

Kt = Dt

K̇t = (ιt − δ)Kt

Z̃t = (t)
α

Ċt
Ct

=
rt − ρht
η

wt =
ΥLϑt
C−ηt

Ḋt = [(Rt − δqt)Dt + wtLt − Ct + Tt] /qt

rt = it − πt

rt =
Rt − δqt + q̇t

qt

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt))(
rt −

Ẏt
Yt

)
πt =

ε

θ
(m̃t −m∗) + π̇t, m∗ =

ε− 1

ε

Yt = ZtK
α
t Lt

1−α

Tt = (1−mt)Yt −
θ

2
π2
t Yt +

[
ιtqt − ιt −

φk

2
(ιt − δ)2

]
Kt

di = −υ
(
it −

(
ρht + φ (πt − π̄) + π̄

))
dt.
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B Empirical Appendix

B.1 Firm level data

The empirical exercise relies on annual firm balance-sheet data from the Central de
Balances Integrada database (Integrated Central Balance Sheet Data Office Survey).
Being a detailed administrative dataset, the main advantage is that it covers the quasi-
universe of Spanish firms (see Almunia et al., 2018 for further details on the represen-
tativeness of this dataset). Our dependent variable, the investment rate, is defined as
the log difference of firm’s tangible capital between periods t and t−1. Firm’s marginal
revenue product of capital (MRPK) is proxied by the log of the ratio of value added
over tangible capital. Leverage is computed as total debt (short-term plus long-term
debt) divided by total assets. Net financial assets are constructed as the log difference
between financial assets and financial liabilities, where financial assets include short-
term financial investment, trade receivables, inventories and cash holdings; and financial
liabilities include short-term debt, trade payables and long-term debt. We proxy for
size using log total assets. Real sales growth is defined as the log difference of sales
in two consecutive years. Variables are deflated using industry price level to preserve
the firms’ level price changes and consider a revenue-based measure of MRPK (Foster
et al., 2008). We use the value-added price deflator for value added and sales, and the
investment price deflator for capital and total assets. Descriptive statistics are reported
in Table 3.

Data is cleaned following closely Ottonello and Winberry (2020). In particular, (i)
observations with negative capital or value added are dropped; (ii) the investment rate
and MRPK are winsorized at 0.5%; (ii) we use net financial assets over as a share
of total assets to control for firms’ savings, following Armenter and Hnatkovska, 2017,
instead of net current assets (as Ottonello and Winberry (2020) do), and we drop values
in absolute terms greater than 10; and (iii) negative values of leverage are dropped, as
well as values higher than 10. While Ottonello and Winberry (2020) drop firms for
which the time spell is shorter than 10 years, we prefer to consider the full sample of
firms without imposing an arbitrary threshold, and we show that our results are robust
considering a balanced sample where we keep only firms that are present in our dataset
for the whole time period considered.
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Table 3: Descriptive statistics

mean sd min max

εMP
t -2.90 7.77 -17.99 7.94
εMP
t x MRPKj,t−1 -0.00 0.08 -1.60 1.82
MRPKt -0.00 1.00 -10.09 10.25
gGDPt x MRPKj,t 0.22 3.07 -40.36 46.81
MRPKj,t (not demeaned) 0.56 2.09 -5.47 6.22
Sales growthj,t 0.00 1.00 -17.84 13.56
Total assetsj,t 0.00 1.00 -5.57 7.07
Leveragej,t -0.00 1.00 -0.57 25.95

Observations 9485676

Notes: The table shows the mean (column 1), standard deviation (column 2), minimum and maximum value (column 3
and 4 respectively) of the main variables used in the analysis. εMP

t is the annualized monetary policy shock,
renormalized so that a positive value is an expansionary shock.MRPK stands for the demeaned measure of MRPK
explained in Section 3.3. MRPK, sales growth, total assets and leverage are standardized, as in Ottonello and
Winberry (2020). MRPK (not demeaned) is the raw variable of MRPK. gGDPt stands for GDP growth.

B.2 Monetary policy shocks

We construct our yearly monetary policy shocks aggregating the monthly monetary
policy shocks of Jarociński and Karadi (2020). Since firms have less time to react
to shocks happening at the end of the year, ignoring this issue would lead to biased
estimates. Therefore, similar to Ottonello and Winberry (2020), but on a month-year
level instead of month-quarter, we apply a weighting scheme that aggregates the shocks
happening in the fourth quarter of the previous year with increasing linear weight, and
uses linear and decreasing weights in the current year. Namely, we add them using
decreasing weights within the year ωa(m), and increasing weights in the last quarter of
the previous year ωb(m), i.e.

εMP
t =

∑
m∈t

ωa(m)εMP
m +

∑
m∈q4t−1

ωb(m)εMP
m .

This is equivalent to say that a shock in January of period t has more weight than a
shock in December of the same year, exactly because firms take time to adjust their
investment plans. Panel 1 of Figure 7 shows the time series of the shock built in
this way. As a robustness check, as well as in order to reduce concerns about potential
autocorrelation in the residuals, we use an alternative weighting scheme that aggregates
the shocks in the same year with a simple linear decreasing weight, without considering
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previous year’s shocks. Panel 2 of Figure 7 shows the time series of the shock built with
this alternative weighting.

Panel 1 - Baseline weighting - εMP
t Panel 2 - Alternative weighting - εMP2

t

Figure 7: Monetary policy shocks at annual frequency.
Notes: Panel 1 shows the monetary policy shocks at an annual frequency, applying a weighting scheme at aggregation
that includes the shock in the fourth quarter of the previous period with an increasing linear weight and uses linear and
decreasing weights in the current year. Panel 2 shows the monetary policy shocks at an annual frequency, applying an
alternative weighting, that is, a weighting scheme at aggregation with linear and decreasing weights in the current year
only.

B.3 Robustness

In this section we check the robustness of our empirical results. We perform variations
of the main empirical specification explained in the main text, equation (43), which we
repeat here for the sake of completeness.

∆log kj,t = αj + αs,t + β (MRPKj,t−1 − Ej [MRPKj]) ε
MP
t +′ Zj,t−1 + uj,t.

Following Ottonello and Winberry (2020) and Eberly et al. (2012), we control for
the lagged of the dependent variable, i.e. firms’ lagged investment rate, since it has been
shown that it is a good predictor of a firm’s current investment. Columns (1) and (2) in
Table 4 show that results are robust to adding this variable, even stronger in magnitude,
and R2 does not change significantly. Columns (3) and (4) in Table 4 show the results
considering the balanced panel, i.e. keeping only firms that we observe during the entire
time sample period, in order to focus on pure incumbents. This does not only confirm
the baseline results, but it shows that the effect can be even larger for incumbent firms.
Columns (5) and (6) in Table 4 use the monetary policy shocks constructed using the
alternative weighting scheme, εMP2

t . Results are still significant and of slightly larger
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magnitude. Finally, Columns (7) and (8) show the results using the baseline monetary
policy shock εMP , but interacting this shock with the lagged MRPK in levels, instead of
the demeaned standardized measure. The coefficients are still positive and significant.
Summing up, all these exercises point at the robustness of the empirical support of the
main mechanism of the model, that is, a higher heterogeneous response of investment
for high MRPK firms to a monetary policy shock.
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C Numerical Appendix

We discretize the model using a finite difference approach and compute non-linearly
the responses to temporary change in parameters (an "MIT shock") using a Newton
algorithm. Instead of time iterations over guesses for aggregate sequences, as is common
in the literature, we use a global relaxation algorithm. This approach has been made
popular in discrete-time models by Juillard et al. (1998) thanks to Dynare, but it is
somewhat less common in continuous-time models (e.g. Trimborn et al., 2008). This
approach helps to overcome the curse of dimensionality since in the sequence space the
complexity of the problem grows only linearly in the number of aggregate variables,
whereas the complexity of the state-space solution grows exponentially in the number
of state variables. Recently Auclert et al. (2019) have exploited a particularly efficient
variant of this approach in the context of heterogeneous-agent models.14 We build on
these contributions when we compute the optimal transition path. Again we make use
of Dynare. We use its nonlinear Newton solver to compute both the steady state of
the Ramsey problem and the optimal transition path under perfect foresight. To find
the steady state, we provide Dynare with the steady state of the private equilibrium
conditions as a function of the policy instrument.

C.1 Finite difference approximation of the Kolmogorov For-

ward equation

The KF equation is solved by a finite difference scheme following Achdou et al. (2017). It
approximates the density ωt (z) on a finite grid z ∈ {z1, ..., zJ}, t ∈ {t1, ..., tN} with steps
∆z and time steps ∆t. We use the notation ωnj := ωn∆t(zj), j = 1, ..., J, n = 0, .., N.

The KF equation is then approximated as

ωnj − ωn−1
j

∆t
=

(
sn(zj)−

Ȧn
An
− (1− ψ)η

)
ωn(zj)

−
ωnj µ(zj)− ωnj−1µ(zj−1)

∆z
+
ωnj+1σ̃

2(zj+1) + ωnj−1σ̃
2(zj−1)− 2ωnj σ̃

2(zj)

2 (∆z)2 ,

14Compared to Auclert et al. (2020), who break the solution procedure into two steps, first solving
for the idiosyncratic variables given the aggregate variables, we solve for the path of all aggregate and
idiosyncratic variables at once. Note that, besides the nonlinear perfect foresight method we refer to
here (see their Section 6), they also propose a linear method.
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which, grouping, results in

ωnj − ωn−1
j

∆t
=

[(
sn(zj)−

Ȧn
An
− (1− ψ)η

)
− µ(zj)

∆z
− σ̃2(zj)

(∆z)2

]
︸ ︷︷ ︸

βnj

ωn(zj)

+

[
µ(zj−1)

∆z
+
σ̃2(zj−1)

2 (∆z)2

]
︸ ︷︷ ︸

%nj−1

ωnj−1 +

[
σ̃2(zj+1)

2 (∆z)2

]
︸ ︷︷ ︸

χnj+1

ωnj+1.

The boundary conditions are the ones associated with a reflected process z at the
boundaries:15

ωn1 − ωn−1
1

∆t
= (βn1 + χn1 )ωn(z1) + χn2ω

n
j+1,

ωnJ − ωn−1
J

∆t
= (βnJ + %nJ)ωn(zJ) + %nJ−1ω

n
j−1.

If we define matrix

Bn =



βn1 + χn1 χn2 0 0 · · · 0 0 0

%n1 βn2 χn3 0 · · · 0 0 0

0 %n2 βn3 χn4 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · %nJ−2 βnJ−1 χnJ
0 0 0 0 · · · 0 %nJ−1 βnJ + %nJ


,

then we can express the KF equation as

ωn − ωn−1

∆t
= Bn−1ωn,

or
ωn =

(
I−∆tBn−1

)−1
ωn−1, (80)

where ωn =
[
ωn1 ωn2 ... ωnJ−1 ωnJ

]T
, and I is the identity matrix of dimension J.

15It is easy to check that this formulation preserves the fact that matrix Bn below is the transpose
of the matrix associated with the infinitesimal generator of the process.
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Extension to non-homogeneous grids Our model has been solved using a ho-
mogeneous grid and all the results presented in the paper have been computed using
homogeneous grids. However, in some robustness tests that we have performed to as-
sess the accuracy of the method, we have used non-homogeneous grid for the state zto
economize on grid points. . We could not find a universally applicable way to imple-
ment non-homogeneous grids in the economics literature, so we propose the following
discretization scheme.16 We have used this scheme to verify that our numerical results
are accurate in the sense that they do not change if we add additional grid points to
the ω grid – no matter whether we add them where most of the mass of ω(z) is located
or in the range in which z∗t moves.

Be z =
[
z1, z2, ... zJ−1 zJ

]
the grid. Define ∆za,b = zb − za and let ∆z =

1
2

[
∆z1,2, ∆z1,3, ∆z2,4, ..., ∆zJ−2,J ∆zJ−1,J

]
. We approximate the KFE (26)

using central difference for both the first derivative and the second derivative.

ωnj − ωn−1
j

∆t
=

(
sn(z)− (1− ψ)η − Ȧn

An

)
ωt (zj)−

[
µ(zj+1)ωt (zj+1)− µ(zj−1)ωt (zj−1)

∆zj−1,j+1

]
+

1

2

∆zj−1,jσ
2(zj+1)ωt (zj+1) + ∆zj,j+1σ

2(zj−1)ωt (zj−1)−∆zj−1,j+1σ
2(zj)ωt (zj)

1
2

(∆zj−1,j+1) ∆zj,j+1∆zj−1,j

16Our approach builds on the one in the appendix to Achdou et al., 2017. It differs from theirs in
two ways. First, it can be derived as a finite difference scheme to the KFE. Their approach delivers
a finite difference approximation for the HJB, but not for the KFE, and hence it requires the grid
to be constructed such that the step size to both sides of any grid point converge to one another.
Furthermore, our approach is not an upwind scheme and has only been tested in the current model,
which features no endogenous drift.
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which, grouping, results in

ωnj − ωn−1
j

∆t
=

[(
sn(z)− (1− ψ)η − Ȧn

An

)
ωt (z) +

σ2(zj)ωt (zj)

∆zj,j+1∆zj−1,j

]
︸ ︷︷ ︸

βnj

ωn(zj)

+

[
µ(zj−1)ωt (zj−1)

∆zj−1,j+1

+
σ2(zj+1)ωt (zj+1)

(∆zj−1,j+1) ∆zj,j+1

]
︸ ︷︷ ︸

%nj−1

ωnj−1

+

[
−µ(zj+1)ωt (zj+1)

∆zj−1,j+1

+
σ2(zj+1)ωt (zj+1)

(∆zj−1,j+1) ∆zj,j+1

]
︸ ︷︷ ︸

χnj+1

ωnj+1.

The law of motion of ω can equivalently be written in matrix form

ωn − ωn−1

∆t
= Bn−1ωn

where

Bn =



βn1 + χn1 χn2 0 0 · · · 0 0 0

%n1 βn2 χn3 0 · · · 0 0 0

0 %n2 βn3 χn4 · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · %nJ−2 βnJ−1 χnJ
0 0 0 0 · · · 0 %nJ−1 βnJ + %nJ


,

Abstracting for brevity from the term
(
sn(z)− (1− ψ)η − Ȧn

An

)
, which is independent

of the grid, and spelling out Bn we have

ωn − ωn−1

∆t
=



− µ(z1)
∆z1,2

− σ(z1)
∆z1,2∆z1,2/2

+ σ(z1)
∆z1,2∆z1,2

− µ(z2)
∆z1,2

+ σ(z2)
∆z1,2∆z1,2

0 · · ·
µ(z1)
∆z1,3

+ σ(z1)
∆z1,3∆z1,2

− σ(z2)
∆z1,2∆z2,3

− µ(z3)
∆z1,3

+ σ(z3)
∆z1,3∆z2,3

· · ·
0 µ(z2)

∆z2,4
+ σ(z2)

∆z2,4∆z2,3
− σ(z3)

∆z2,3∆z3,4
· · ·

0 0 µ(z3)
∆z3,5

+ σ(z3)
∆z3,4∆z3,5

· · ·
...

...
... . . .


ωn.
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We can rewrite this as follows

ωn − ωn−1

∆t
=



− µ(z1)
∆z1,2

− σ(z2)
∆z1,2∆z1,2

− µ(z2)
∆z1,2

+ ∆z2,3σ(z2)

∆z2,3(∆z1,2∆z1,2)
0 · · ·

µ(z1)
∆z1,3

+ σ(z1)
∆z1,3∆z1,2

− (∆z1,2+∆z2,3)σ(z2)

∆z1,3(∆z1,2∆z2,3)
− µ(z3)

∆z1,3
+ ∆z3,4σ(z3)

∆z3,4(∆z1,3∆z2,3)
· · ·

0 µ(z2)
∆z2,4

+ ∆z1,2σ(z2)

∆z1,2(∆z2,4∆z2,3)
− (∆z2,3+∆z3,4)σ(z3)

∆z2,4(∆z2,3∆z3,4)
· · ·

0 0 µ(z3)
∆z3,5

+ ∆z2,3σ(z3)

∆z2,3(∆z3,4∆z3,5)
· · ·

...
...

... . . .


ωn.

Note that the bold terms in line i are equal to 1/∆zi. Thus the columns of Bn∆z sum
up to 1 and the operation is mass preserving, in the sense that the above relationship
guarantees that ∑

ωnj ∆zj =
∑

ωn−1
j ∆zj

where
∑
ωnj ∆zj is a trapezoid approximation of the integral

´
ωn(z)dz.

C.2 Finite difference approximation of the integrals

To approximate the integrals in
´ z

0
ωt (z) dz and

´∞
z∗t
zωt(z)dz we use the trapezoid rule.

I.e. if f(z) is either ωt (z) or zωt(z) and zj ≤ z̄ ≤ zj+1 then the integral from the closest
lower gridpoint is given by

ˆ z̄

zj

f (z) dz =

[
f (zj) +

1

2
[f (zj+1)− f (zj)]

(z̄ − zj)
∆z

]
(z̄ − zj)

We use this formula to construct the integrals over a larger range piecewise. For
example:

ˆ zN

z1

f (z) dz =
[

1
2

1 1 · · · 1 1
2

]

f (z1)

f (z2)
...

f (zN)
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and

ˆ z∗

z1

f (z) dz =
[

1
2 1 1 · · · 1 1

2

]


f (z1)

f (z2)
...

f (zj∗)


+

[
f (zj∗−1) +

1

2
[f (zj∗)− f (zj∗−1)]

(z∗ − zj∗−1)

∆z

]
(z∗ − zj∗−1)

where j∗= arg min
j
{j ≤ J |zj∗ > z∗}

C.3 Algorithm to solve for the SS

Here we present how to solve for the SS of the private equilibrium, that is for the SS
when the central bank sets a certain level of the nominal interest rate in SS iss.

We know that in SS consumption does not grow, hence from (14)

rss = ρh. (81)

We also know that in SS, the investment rate is equal to the depreciation,

ιss = δ. (82)

This means that, from equation (17) and the functional form we assumed for the capital
adjustment costs (37),

(qt − 1− Φ′ (ιt)) (rt − (ιt − δ)) = q̇t − Φ′′ (ιt) ι̇t − (qtιt − ιt − Φ (ιt)) (83)

(
qss − 1− φk(ιss − δ)

) (
ρhh − (ιss − δ)

)
= 0− φk ∗ 0−

(
qssιss − ιss − φk(ιss − δ)

)

ρhh(qss − 1) = δ(1− qss)

.From here we can solve for the steady state value of qss, which is given by

qss = 1. (84)
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Furthermore, combining (81) with the fisher equation and the fact that the planner
sets a certain nominal rate iss we get that

πss = iss − ρh. (85)

In SS, π̇t = 0 and Ẏt = 0. Hence, from equation (20) we obtain

mss =

(
m∗ + ρhπss

θ

ε

)
. (86)

Using equation (34) and (81),

ρh =
1

qss

(
αmtZtA

α−1
t L1−α z∗t

γX t

)
− δ (87)

From equation (35) and (81),

Ȧt
At

= 0 =
1

qt
(αmtZtAt

α−1Lt
1−α −Rt(1− Ω(z∗t )) +Rt − δqt − qt(1− ψ)η). (88)

Plugging the latter equation into the former, using qSS = 1 and using the definition of
rt we obtain:

ρh + δ =
[
(ρh + δ) (γ(1− Ω(z∗t ))− 1) + (1− ψ)η + δ

] z∗

γX∗
. (89)

In the algorithm, we use a non-linear equation solver to obtain z∗ from this equation.
The Algorithm.

• Get rss = ρh, πss = π̄ and iss = ρh + πss and Rss = qss(ρh + δ) and mss =

m∗ + ρhπss θ
ε
.

• Given that our calibration target for Lss = 1, we “guess” Lss = 1

• Let n now denote the iteration counter. Make an initial guess for the net worth
distribution ω0

1. Use a non-linear equation solver on equation (89) to obtain z∗ from equation
(89).

2. Obtain Zn = (γnX
∗
n)α .
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3. Find A from equation (33),

An =

[
qssρh + δqss

αmnZnLm1−α z∗t
γXt

] 1

α−1

.

4. Find the stocks Kn = γ(1− Ωn(z∗))An, Dn = Kn − An.

5. Compute wn = (1− α)mssZnAn
αLn

−α,ϕn = α
(

(1−α)
wn

)(1−α)/α

mss 1
α .

6. Get aggregate output Y = ZnA
α
nLn

1−α, transfers Tn = (1−mss)Yn −
θ
2

(πss)2 Yn + (1− ψ)ηAt , and consumption Cn = wnLm + rssDn + Tn.

7. Update ŝnj = 1
qss

(γmax {zϕn −Rn, 0}+Rn−δqss) and employ it to construct
matrix Bn−1.

8. Update ωn+1 using equation ωn+1−ωn
∆t

= Bnωn+1.

9. If the net worth distribution do not coincide with the guess, set n = n + 1

and return to point 1

• Set Υ =
(
wL=1C

−η
L=1

)
to ensure our “guess” for Lss is correct.

D Computing optimal policies in heterogeneous-agent

models

D.1 General algorithm

Solving for the optimal policy in models with heterogeneous agents poses a certain
challenge since the state in such a model contains a distribution, which is an infinite-
dimensional object. In this section, we explain how such models can be solved in
a relatively straightforward manner. Our approach relies on three main conceptual
ingredients: (i) finite difference approximation of continuous time and continuous id-
iosyncratic states, (ii) symbolic derivation of the planner’s first-order conditions, and
(iii) use of a Newton algorithm to solve the optimal policy problem non-linearly in the
sequence space. Here we present a general overview which goes beyond the particular
model presented in the paper.
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(i) Finite difference approximation A continuous-time, continuous-space heterogeneous-
agent model discretized using an upwind finite-difference method becomes a discrete-
time, discrete-space model. In this discretized model the dynamics of the (now finite-
dimensional) distribution µt at period t are given by

µt =
(
I−∆tAT

t

)−1
µt−1, (90)

where ∆t is the time step between periods and At is a matrix whose entries depend
nonlinearly and in closed form on the idiosyncratic and aggregate variables in period
t.17 Similarly, the HJB equation is approximated as18

ρvt+1 = ut+1 + At+1vt+1, − (vt+1 − vt) /∆t. (91)

Together with additional static equations, such as market clearing conditions or bud-
get constraints, and aggregate dynamic equations, including the Euler equations of
representative agents (if any) and the dynamics of aggregate states, they define the
discretized model.

Though we have ended up with a discrete-time approximation, casting the original
model in continuous time is central to our method. The discretized dynamics of the
distribution (90) and Bellman equation (91) present two advantages compared to their
counterparts in the discrete-time continuous-state formulation typically employed in
the literature. First, the analytical tractability of the original continuous-time model
implies that the agents’ optimal choices in the discretized version are always “on the
grid”, avoiding the need for interpolation, and are “one step at a time” making the matrix
Πt sparse.19 Second, the private agent’s FOCs hold with equality even at the exogenous
boundaries (see Achdou et al. (2017) for a detailed discussion of these advantages).

(ii) Symbolic derivation of planner’s FOCs Once we have a finite-dimensional
discrete-time discrete-space model, we can derive the planner’s FOCs by symbolic dif-
ferentiation using standard software packages. For convenience, we rely on Dynare’s

17Technically, this matrix results from the discretization of the infinitesimal generator of the id-
iosyncratic states. In the example of Section 2, µt = ωt and At = Bt.

18In the model presented in this paper the HJB can be solved analytically and hence there is no
need to solve it computationally.

19The introduction of Poisson shocks would not change the sparsity of matrix Πt.
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toolbox for Ramsey optimal policy to do this task for us. To this end, we simply pro-
vide the discretized version of our model’s private equilibrium conditions to Dynare
(the discretized counterpart to the equations in Appendix A.7), making use of loops
for the heterogeneous-agent block, as in Winberry (2018). We furthermore provide the
discretized objective function, and Dynare then takes symbolic derivatives to construct
the set of optimality conditions of the planner for us.

A natural question at this stage is under which conditions the optimal policies of
the discrete-time, discrete-space problem coincide with those of the original problem.
The following proposition shows that, if the time interval is small enough (the stan-
dard condition when approximating continuous-time models), then the two solutions
coincide.

Proposition 1 : Provided that all the Lagrange multipliers associated to the equi-
librium conditions are continuous for t > 0, the solution of the "discretize-optimize"
and the "optimize-discretize" algorithms converge to each other as the time step ∆t goes
towards 0.

Proof : See Appendix D.2.
The proposition guarantees that both strategies coincide when ∆t goes towards

zero and provides an error bound that depends on the value of the maximum change in
the Lagrange multipliers. This proposition is quite general, as most continuous-time,
perfect-foresight, general equilibrium models do not feature discontinuities for t > 0.

The model presented in Section 2 is arguably simpler than the general heterogenous-
agent model covered by Proposition 1, as it features an analytic solution for the HJB
equation. To get an idea of the performance of our method in a case in which the
HJB is also a constraint in the planner’s problem, as well as to showcase its generality
in dealing with different problems, we compute the optimal monetary policy in the
HANK model of Nuño and Thomas (2016) using our method in Dynare (see Appendix
D.3). We compare our results with those using their "optimize-discretize" algorithm at
monthly frequency 4t = 1/12. We conclude that both approaches essentially coincide.

(iii) Newton algorithm to solve the optimal policy problem non-linearly in
the sequence space Finally, we use the discretized optimality conditions of the plan-
ner to compute non-linearly the optimal responses a temporary change in parameters
(an "MIT shock") using a Newton algorithm. Instead of time iterations over guesses
for aggregate sequences, as is common in the literature, we use a global relaxation al-
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gorithm. This approach has been made popular in discrete-time models by Juillard
et al. (1998) thanks to Dynare, but it is somewhat less common in continuous-time
models (e.g. Trimborn et al., 2008). This approach helps to overcome the curse of
dimensionality since in the sequence space the complexity of the problem grows only
linearly in the number of aggregate variables, whereas the complexity of the state-space
solution grows exponentially in the number of state variables. Recently Auclert et al.
(2019) have exploited a particularly efficient variant of this approach in the context of
heterogeneous-agent models.20 We build on these contributions when we compute the
optimal transition path. Again we make use of Dynare. We use its nonlinear Newton
solver to compute both the steady state of the Ramsey problem and the optimal tran-
sition path under perfect foresight.21 Our hope is that the convenience of using Dynare
will make optimal policy problems in heterogeneous-agent models easily accessible to a
large audience of researchers.

The solution to the perfect foresight problem can be easily adapted to the case
with aggregate shocks. As Boppart et al. (2018) show, the perfect-foresight transitional
dynamics to an "MIT shock" coincides with the solution of the model with aggregate
uncertainty using a first-order perturbation approach. We follow this approach to an-
alyze the optimal response to a cost-push shock below.

Finally, it is important to highlight that our solution approach is different from
the one in Winberry (2018) or Ahn et al. (2018). These papers expand the seminal
contribution by Reiter (2009), based on a two-stage algorithm that (i) first finds the
nonlinear solution of the steady state of the model and (ii) then applies perturbation
techniques to produce a linear system of equations describing the dynamics around
the steady state. Winberry (2018) illustrates how this can be also implemented using
Dynare and Ahn et al. (2018) extend the methodology to continuous-time problems.
However, these methods were not created to deal with the problem of finding the
optimal policies, the focus of our algorithm, as the first stage requires the computation
of the steady state, which in our case is the steady state of the problem under optimal
policies. Our algorithm finds the steady state of the planner’s problem, including the

20Compared to Auclert et al. (2020), who break the solution procedure into two steps, first solving
for the idiosyncratic variables given the aggregate variables, we solve for the path of all aggregate and
idiosyncratic variables at once. Note that, besides the nonlinear perfect foresight method we refer to
here (see their Section 6), they also propose a linear method.

21To find the steady state, we provide Dynare with the steady state of the private equilibrium
conditions as a function of the policy instrument.
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Lagrange multipliers. Naturally, this steady does not need to coincide with the steady
state that can be found by looking for the value of the planner’s policy that maximizes
steady-state welfare.

D.2 Proof of proposition D.1

Proof: The proof has the following structure. First, we set up a generic planner’s
problem in a continuous-time heterogeneous-agent economy without aggregate uncer-
tainty. Second, we derive the continuous time optimality conditions of the planner’s
problem and discretize them. Third, we discretize the planners problem and the derive
the optimality conditions. Fourth, we compare the two sets of discretized optimality
conditions.

1. The generic problem The planner’s problem in an economy with heterogeneity
among one agent type (e.g. households or firms) can be written as
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max
Zt,ut(x),µt(x),vt(x)

ˆ ∞
0

exp(−%t)f0(Zt)dt (92)

s.t. ∀t

Ẋt = f1(Zt) (93)

U̇t = f2(Zt) (94)

0 = f3(Zt) (95)

Ũt =

ˆ
f4 (x, ut(x), Zt)µt (x) dx (96)

ρvt(x) = v̇t(x) + f5(x, ut(x), Zt) (97)

+
I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

I∑
k=1

(
σ(x)σ(x)>

)
i,k

2

∂2vt(x)

∂xi∂xk
, ∀x

0 =
∂f5

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi
, j = 1, ..., J, ∀x. (98)

µ̇t (x) = −
I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] (99)

+
1

2

I∑
i=1

I∑
k=1

∂2

∂xi∂xk

[(
σ(x)σ(x)>

)
i,k
µt (x)

]
, ∀x

X0 = X̄0 (100)

µ0 (x) = µ̄0 (x) (101)

limt→∞U = Ū∞ (102)

limt→∞v(x) = v̄(x)∞ (103)

where we have adopted the following notation:

• Variables (capitals are reserved for aggregate variables):

– x individual state vector with I elements

– u individual control vector with J elements

– v individual value function vector with 1 element

– u(x) control vector as function of individual state

– µ(x) distribution of agents across states
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– v(x) value function as function of individual state

– X aggregate state vector (other than µ)

– Û aggregate control vector of purely contemporaneous variables

– U aggregate control vector of intertemporal variables

– Ũ control vector of aggregator variables

– Zt =
{
Ũt, Ut, Ūt, Xt

}
vector of all aggregate variables

• Functions

– b function that determines the drift of x

– f0 welfare function

– f1, f2, f3 aggregate equilibrium conditions

– f4 aggregator function

– f5 individual utility function

Line (92) is the planner’s objective function.22 Equations (93)-(95) are the aggregate
equilibrium conditions for aggregate states, jump variables and contemporaneous vari-
ables. In our model, examples for each of these three types of equations are the law of
motion of aggregate capital, the household’s Euler equation and the household’s labor
supply condition, respectively. Equation (96) links aggregate and individual variables,
such as the definition of aggregate TFP in our model. Equations (97) and (98) are the
individual agent’s value function and first order conditions, which must hold across the
whole individual state vector x. In our model we do not have these two types of equa-
tions since we can analytically solve the individual optimal choice. The Kolmogorov
Forward equation (24) determines the evolution of the distribution of agents. Finally
(100)-(103) are the initial and terminal conditions for the aggregate and individual state
and dynamic control variables. In our model these are the initial capital stock and firm
distribution and the terminal conditions for variables such as consumption.

2. Optimize, then discretize First we consider the approach introduced in Nuño
and Thomas (2016), namely to compute the first order conditions using calculus of
variations and then to discretize the problem using an upwind finite difference scheme.

22Notice that the planner’s discount factor, %, can be different to that of individual agents, ρ.

73



2.a The Lagrangian The Lagrangian for this problem is given by:23

L =

ˆ ∞
0

{
e−%t f0(Zt)

+ λ1,t

(
Ẋt − f1(Zt)

)
+ λ2,t

(
U̇t − f2(Zt)

)
+ λ3,t (f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ [
λ5,t(x)

(
−ρvt(x) + v̇t(x) + f5(x, ut(x), Zt) +

I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

σ2
i (x)

2

∂2vt(x)

∂2xi

)]
dx

+

J∑
j=1

ˆ [
λ6,j,t(x)

(
∂f5

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−µ̇t (x) +

(
−

I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] +

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)µt (x)

]))]
dx

}
dt

where λ1 to λ7 denote the multipliers on the respective constraints. For convenience,

23For simplicity, we assume that the Wiener processes driving the dynamics of the state x are
independent, though the proof can be trivially extended to that case, at the cost of a more cumbersome
notation.
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we write the time derivatives in a separate line at the end. The Lagrangian becomes:

L =

ˆ ∞
0

{
e−%t f0(Zt)

+ λ1,t (−f1(Zt))

+ λ2,t (−f2(Zt))

+ λ3,t (−f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ [
λ5,t(x)

(
−ρvt(x) + f5(x, ut(x), Zt) +

I∑
i=1

bi (x, ut(x), Zt)
∂vt(x)

∂xi
+

I∑
i=1

σ2
i (x)

2

∂2vt(x)

∂2xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂f5,t

∂uj,t
+

I∑
i=1

∂bi
∂uj,t

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi
[bi (x, ut(x), Zt)µt (x)] +

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)µt (x)

])]
dx

}
dt

+

ˆ ∞
0

{
e−%t λ1,tẊt + λ2,tU̇t +

ˆ
[λ5,tv̇t(x)] dx−

ˆ
[λ7,tµ̇t (x)] dx

}
dt.

We have ignored the terminal and initial conditions but we will account for them
later on. Now we manipulate the Lagrangian using integration by parts in order to
bring it into a more convenient form. We start with the last line. Switching the order
of integration, the last line becomes

ˆ ∞
0

e−%t λ1,tẊt dt+

ˆ ∞
0

e−%t λ2,tU̇t dt+

ˆ ˆ ∞
0

[
e−%tλ5,t(x)v̇t(x)

]
dt dx

−
ˆ ˆ ∞

0

[
e−%tλ7,t(x)µ̇t (x)

]
dt dx

Now we integrate this expression by parts with respect to time t, using
ˆ ∞

0

e−%t atḃt dt =
[
e−%tatbt

]∞
0
−
ˆ ∞

0

e−%t(ȧ1,t − %a1,t)bt dt

= lim
t→∞

e−%tatbt − a0b0 −
ˆ ∞

0

e−%t(ȧt − %at)bt dt
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to get

lim
t→∞

e−%tλ1,tXt − λ1,0X0 −
ˆ ∞

0

e−%t(λ̇1,t − %λ1,t)Xtdt+ lim
t→∞

e−%tλ2,tUt − λ2,0U0

−
ˆ ∞

0

e−%t(λ̇2,t − %λ2,t)Utdtx

+

ˆ (
lim
t→∞

e−%tλ5,t(x)vt(x)− λ5,0(x)v0(x)
)
dx−

ˆ ˆ ∞
0

e−%t(λ̇5,t(x)− %λ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−%tλ7,t(x)µt(x)− λ7,0(x)µ0(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇7,t(x)− %λ7,t(x))µt (x) dtdx

Now we use the initial and terminal conditions to drop some limt→∞ and t = 0

terms,

+ lim
t→∞

e−%tλ1,tXt − λ2,0U0 −
ˆ ∞

0

e−%t(λ̇1,t − %λ1,t)Xtdt−
ˆ ∞

0

e−%t(λ̇2,t − %λ2,t)Utdt

−
ˆ
λ5,0(x)v0(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇5,t(x)− %λ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−%tλ7,t(x)µt(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇7,t(x)− %λ7,t(x))µt (x) dtdx

Next we integrate lines 6 to 8 by parts with respect to x. This yields:

+

ˆ {[(
−ρλ5,t(x)vt(x) + f5(x, ut(x), Zt)−

I∑
i=1

∂bi (x, ut(x), Zt)λ5,t(x)

∂xi
vt(x)

)]
dx

+

ˆ [(
+

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

]
vt(x)

)]
dx

+
J∑
j=1

ˆ λ6,j,t(x)
∂f5,t

∂uj,t
−

I∑
i=1

∂
[
λ6,j,t(x) ∂bi

∂uj,t

]
∂xi

vt(x)

 dx
+

ˆ [( I∑
i=1

∂λ7,t(x)

∂xi
[bi (x, ut(x), Zt)µt (x)] +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2
µt (x)

)]
dx

}
dt

Putting this all together the Lagrangian has become:
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L =

ˆ ∞
0

{
e−%t f0(Zt)

+ λ1,t (−f1(Zt))

+ λ2,t (−f2(Zt))

+ λ3,t (−f3(Zt))

+ λ4,t

(
Ũt −

ˆ
f4 (x, ut(x), Zt)µt (x) dx

)
+

ˆ (
−ρλ5,t(x)vt(x) + λ5,t(x)f5(x, ut(x), Zt)−

I∑
i=1

∂ [bi (x, ut(x), Zt)λ5,t(x)]

∂xi
vt(x)

)
dx

+

ˆ (
1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

]
vt(x)

)
dx

+
J∑
j=1

ˆ λ6,j,t(x)
∂f5,t

∂uj,t
−

I∑
i=1

∂
[
λ6,j,t(x) ∂bi

∂uj,t

]
∂xi

vt(x)

 dx
+

ˆ ∞
0

[(
I∑
i=1

∂λ7,t(x)

∂xi
[bi (x, ut(x), Zt)µt (x)] +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2
µt (x)

)]
dx

}
dt

+ lim
t→∞

e−%tλ1,tXt − λ2,0U0 −
ˆ ∞

0

e−%t(λ̇1,t − %λ1,t)Xtdt−
ˆ ∞

0

e−%t(λ̇2,t − %λ2,t)Utdt

+

ˆ
−λ5,0(x)v0(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇5,t(x)− %λ5,t(x))vt(x)dtdx

−
ˆ

lim
t→∞

e−%tλ7,t(x)µt(x)dx+

ˆ ˆ ∞
0

e−%t(λ̇7,t(x)− %λ7,t(x))µt (x) dtdx.

2.b Optimality conditions in the continuous state space We take the Gateaux
derivatives in direction ht(x) for each endogenous variable x. These derivatives have to
be equal to zero for any ht(x) in the optimum. This implies the following optimality
conditions:

Aggregate variables:
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Ut : 0 = −(λ̇2,t − %λ2,t) (104)

+
∂f0,t

∂Ut
− λ1,t

∂f1,t

∂Ut
− λ2,t

∂f2,t

∂Ut
− λ3,t

∂f3,t

∂Ut
− λ4,t

ˆ
∂f4,t

∂Ut
µt (x) dx (105)

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ut
+

I∑
i=1

∂bi,t
∂Ut

∂vt(x)

∂xi

)]
dx (106)

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ut
+

I∑
i=1

∂bi,t
∂uj,t∂Ut

∂vt(x)

∂xi

)]
dx (107)

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t
∂Ut

µt (x)

])]
dx, (108)

∀t > 0, (109)

0 = λ2,0. (110)

Xt : 0 = −(λ̇1,t − %λ1,t)

+
∂f0,t

∂Xt

− λ1,t
∂f1,t

∂Xt

− λ2,t
∂f2,t

∂Xt

− λ3,t
∂f3,t

∂Xt

− λ4,t

ˆ
∂f4,t

∂Xt

µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Xt

+
I∑
i=1

∂bi,t
∂Xt

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Xt

+
I∑
i=1

∂bi,t
∂uj,t∂Xt

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t
∂Xt

µt (x)

])]
dx,

∀t ≥ 0,

0 = lim
t→∞

e−%tλ1,t(x).
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Ût : 0 = 0

+
∂f0,t

∂Ût
− λ1,t

∂f1,t

∂Ût
− λ2,t

∂f2,t

∂Ût
− λ3,t

∂f3,t

∂Ût
− λ4,t

ˆ
∂f4,t

∂Ût
µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ût
+

I∑
i=1

∂bi,t

∂Ût

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ût
+

I∑
i=1

∂bi,t

∂uj,t∂Ût

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t

∂Ût
µt (x)

])]
dx,

∀t ≥ 0.

Ũt : 0 = λ4,t

+
∂f0,t

∂Ũt
− λ1,t

∂f1,t

∂Ũt
− λ2,t

∂f2,t

∂Ũt
− λ3,t

∂f3,t

∂Ũt
− λ4,t

ˆ
∂f4,t

∂Ũt
µt (x) dx

+

ˆ [
λ5,t(x)

(
∂f5,t

∂Ũt
+

I∑
i=1

∂bi,t

∂Ũt

∂vt(x)

∂xi

)]
dx

+
J∑
j=1

ˆ [
λ6,j,t(x)

(
∂2f5,t

∂uj,t∂Ũt
+

I∑
i=1

∂bi,t

∂uj,t∂Ũt

∂vt(x)

∂xi

)]
dx

+

ˆ [
λ7,t(x)

(
−

I∑
i=1

∂

∂xi

[
∂bi,t

∂Ũt
µt (x)

])]
dx,

∀t ≥ 0.

Value function, distribution and policy functions
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vt (x) : 0 =

(
−λ5,t(x)ρ−

I∑
i=1

∂ [λ5,t(x)bi (x, ut(x), Zt)]

∂xi
+

1

2

I∑
i=1

∂2

∂2xi

[
σ2
i (x)λ5,t(x)

])

−
J∑
j=1

I∑
i=1

∂

∂xi

(
λ6,j,t(x)

∂bi (x, ut(x), Zt)

∂uj,t

)
−(λ̇5,t(x)− %λ5,t(x)),

∀t > 0,

0 = λ5,0(x).

µt (x) : 0 = −λ4,tf4 (x, ut(x), Zt)

+λ7,t(x)

(
I∑
i=1

∂λ7,t(x)

∂xi
bi (x, ut(x), Zt) +

I∑
i=1

∂2λ7,t(x)

∂2xi

σ2
i (x)

2

)
+(λ̇7t(x)− %λ7,t(x)),

∀t ≥ 0,

0 = lim
t→∞

e−%tλ7,t(x).

ul,t (x) : 0 = −λ4,t
∂f4

∂ul,t
µt (x)

+

=0︷ ︸︸ ︷[
λ5,t(x)

(
∂f5

∂ul,t
+

I∑
i=1

∂bi
∂ul,t

∂vt(x)

∂xi

)]

+
J∑
j=1

λ6,k,t(x)

(
∂2f5

∂ul,t∂uj,t
+

I∑
i=1

∂2bi
∂ul,t∂uj,t

∂vt(x)

∂xi

)

−

(
I∑
i=1

∂λ7,t(x)

∂xi

∂bi,t
∂ul,t

µt (x)

)
.
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2.c Discretized optimality conditions Now we discretize these conditions with
respect to time and idiosyncratic states.

The idiosyncratic state is discretized by a evenly-spaced grid of size [N1, ..., NI ]

where 1, .., I are the dimensions of the state x. We assume that in each dimen-
sion there is no mass of agents outside the compact domain [xi,1, xi,Ni ]. The state
step size is ∆xi.We define xn ≡ (x1,n1 , ..., xi,ni , ..., xI,nI ), where n1 ∈ {1, N1} , ..., nI ∈
{1, NI}. We are assuming that, due to state constraints and/or reflecting boundaries,
the dynamics of idiosyncratic states are constrained to the compact set [x1,1, x1,N1 ] ×
[x2,1, x2,N2 ]×....×[xI,1, xI,NI ]. We also define xni+1 ≡ (x1,n1 , ..., xi,ni+1, ..., xI,nI ), xni−1 ≡
(x1,n1 , ..., xi,ni−1, ..., xI,nI ) f

n
t ≡ f (xn, unt , Zt), f

ni−1
t ≡ f (xni−1, unt , Zt) and fni+1

t ≡
f (xni+1, unt , Zt). I.e. the superscript n indicates a particular grid point and the super-
script ni + 1 and ni − 1 indicate neighboring grid points along dimension i.

To discretize the problem we now replace (i) time derivatives of multipliers by back-
ward derivatives, (ii) integrals by sums (iii) derivatives with respect to x by the upwind
derivatives ∇ or ∇̂ :

∇i [v
n
t ] ≡

[
Ibni,t>0

vni+1
t − vnt

∆xi
+ Ibni,t<0

vnt − v
ni−1
t

∆xi

]
,

∇̂i [µ
n
t ] ≡

Ibni+1
i,t <0

µni+1
t − Ibni,t<0µ

n
t

∆xi
+

Ibni,t>0µ
n
t − I

b
ni−1
i,t >0

µni−1
t

∆xi

 ,
for any discretized functions vnt , µnt . We simplify the notation for sums

∑
n ≡

∑
n1∈{1,..,N1},..,nI∈{1,..,NI} .

We maintain the subscript t even if it refers now to discrete time with a step ∆t,
that is, Xt+1is the shortcut for Xt+4t. The second-order derivative is approximated as

4i [v
n
t ] ≡

[(
vni+1
t

)
+
(
vni−1
t

)
− 2 (vnt )

(∆xi)
2

]
.

We start with the optimality condition for Ut
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Ut : 0 = −
(
λ2,t − λ2,t−1

∆t
− %λ2,t

)
(111)

+
∂f0

∂Ut
− λ1,t

∂f1

∂Ut
− λ2,t

∂f2

∂Ut
− λ3,t

∂f3

∂Ut
− λ4,t

N∑
n=1

∂fn4
∂Ut

µnt (112)

+
∑
n

[
λn5,t

(
∂fn5
∂Ut

+
I∑
i=1

∂bni
∂Ut
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Ut

+
I∑
i=1

∂bni
∂uj∂Ut

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Ut

µnt

]]
(113)

∀t ≥ 0.

The optimality conditions for the other aggregate variables look very much alike:

Xt : 0 = −(
λ1,t − λ1,t−1

∆
− %λ1,t)

+
∂f0

∂Xt

− λ1,t
∂f1

∂Xt

− λ2,t
∂f2

∂Xt

− λ3,t
∂f3

∂Xt

− λ4,t

∑
n

∂fn4
∂Xt

µnt

+
∑
n

[
λn5,t

(
∂fn5
∂Xt

+
I∑
i=1

∂bni
∂Xt

∇i [v
n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Xt

+
I∑
i=1

∂bni
∂uj∂Xt

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Xt

µnt

]]
∀t > 0.
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Ût : 0 = 0

+
∂f0

∂Ût
− λ1,t

∂f1

∂Ût
− λ2,t

∂f2

∂Ût
− λ3,t

∂f3

∂Ût
− λ4,t

∑
n

∂fn4

∂Ût
µnt

+
∑
n

[
λn5,t

(
∂fn5

∂Ût
+

I∑
i=1

∂bni

∂Ût
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5

∂uj∂Ût
+

I∑
i=1

∂bni

∂uj∂Ût
∇i [v

n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t

∂Ût
µnt

]]
∀t ≥ 0.

Ũt : 0 = λ4,t

+
∂f0

∂Ũt
− λ1,t

∂f1

∂Ũt
− λ2,t

∂f2

∂Ũt
− λ3,t

∂f3

∂Ũt
− λ4,t

N∑
n=1

∂fn4
∂Ũt

µnt

+
∑
n

[
λn5,t

(
∂fn5
∂Ũt

+
I∑
i=1

∂bni
∂Ũt
∇i [v

n
t ]

)]

+
J∑
j=1

∑
n

[
λn6,j,t

(
∂2fn5
∂uj∂Ũt

+
I∑
i=1

∂bni
∂uj∂Ũt

∇i [v
n
t ]

)]

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t

∂Ũt
µnt

]]
∀t ≥ 0.

The discretized optimality condition with respect to the value function vt (x), the
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distribution µt (x) and the individual jump variable uj,t(x) are.

vt (x) : 0 = −λn5,tρ−
I∑
i=1

∇̂i

[
λn5,tb

n
i,t

]
(114)

+
1

2

I∑
i=1

I∑
k=1

∇i

[
σni,kλ

n
5,t

]
−

J∑
j=1

I∑
i=1

(
∇̂i

[
λn6,j,t

∂bni,t
∂unj,t

])
−(
λn5,t − λn5,t−1

∆t
− %λn5,t).

µt (x) : 0 = −λ4,tf
n
4,t (115)

+λ7,t(x)

(
I∑
i=1

bi (x, ut(x), Zt)∇i

[
λn7,t
]

+
1

2

I∑
i=1

(
σ2
i

)n42
i

[
λn7,t
])

+
λn7,t − λn7,t−1

∆t
− %λn7,t

ul,t (x) : 0 = −λ4,t
∂f4

∂ul,t
µnt (116)

+
J∑
j=1

λn6,k,t

(
∂2fn5,t

∂unl,t∂u
n
j,t

+
I∑
i=1

∂2bni,t
∂unl,t∂u

n
j,t

∇i [v
n
t ]

)

−
I∑
i=1

∇i

[
λn7,t
] ∂bni,t
∂ul,t

µnt

84



3. Discretize, then optimize We follow here the reverse approach, discretizing first
and optimizing next.3.a The discretized planner’s problem

Now first discretize the optimization problem with respect to time (time step ∆t)
and the idiosyncratic state (N grid points, grid step ∆xi). We define the discount factor
β ≡ (1 + %∆t)−1 .

max
Zt,unt ,µ

n
t ,v

n
t

∑
t

βtf0(Zt)

s.t. ∀t
Xt+1 −Xt

∆t
= f1(Zt) (117)

Ut+1 − Ut
∆t

= f2(Zt) (118)

0 = f3(Zt) (119)

Ũt =
N∑
n=1

f4 (xn, unt , Zt)µ
n
t (120)

ρvnt =
vnt+1 − vnt

∆t
+ f5(xn, unt , Zt) +

I∑
i=1

bi (x
n, unt , Zt)∇i [v

n
t ] (121)

+
1

2

I∑
i=1

(
σ2
i

)n42
i [vnt ] , ∀n

0 =
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [v
n
t ] , ∀j, n. (122)

µnt+1 − µnt
∆t

= −
I∑
i=1

∇̂i

[
bni,tµ

n
t

]
(123)

+
1

2

I∑
i=1

4i

[
σ2
i µ

n
t

]
(124)

X0 = X̄0 (125)

µn0 = µ̄n0 (126)
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3.b The Lagrangian The Lagrangian is

L =
∑
t

βtf0(Zt)

+
∑
t

βtλ1,t

{
Xt+1 −Xt

∆t
− f1(Zt)

}
+
∑
t

βtλ2,t

{
Ut+1 − Ut

∆t
− f2(Zt)

}
+
∑
t

βtλ3,t {−f3(Zt)}

+
∑
t

βtλ4,t

{
Ũt −

∑
n

f4 (xn, unt , Zt)µ
n
t

}

+
∑
t

∑
n

βtλn5,t

{
−ρvnt +

vnt+1−vnt
∆t

+ f5(xn, unt , Zt) +
∑I

i=1 bi (x
n, unt , Zt)∇i [v

n
t ]

+
∑I

i=142
i [vnt ]

}

+
∑
t

∑
n

J∑
j=1

βtλn6,j,t

{
∂fn5,t
∂unj,t

+
I∑
i=1

∂bni,t
∂unj,t

∇i [v
n
t ]

}

+
∑
t

∑
n

βtλn7,t

{
−µnt+1−µnt

∆t
−
∑I

i=1 ∇̂i

[
bni,tµ

n
t

]
+1

2

∑I
i=14i [σ

2
i µ

n
t ]

}

3.c The optimality conditions The FOCs are

∂L

∂Ut
: 0 =

∂f0,t

∂Ut
− λ1,t

∂f1,t

∂Ut
+ λ2,t

{
− 1

∆t
− ∂f2,t

∂Ut

}
+ β−1λ2,t−1

1

∆t
− λ3,t

∂f3,t

∂Ut
− λ4,t

∑
n

∂fn4,t
∂Ut

µnt(127)

+
∑
n

λn5,t

{
+
∂fn5,t
∂Ut

+
I∑
i=1

∂bni,t
∂Ut
∇i [v

n
t ]

}

+
∑
n

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
I∑
i=1

∂2bni,t
∂unj,t∂Ut

∇i [v
n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂Ut

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂Ut

µnt
∆xi

]}
∀t ≥ 0
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∂L

∂Xt

: 0 =
∂f0,t

∂Xt

− λ1,t

{
1

∆t
+
∂f1,t

∂Xt

}
+ β−1λ1,t−1

1

∆t
− λ2,t

∂f2,t

∂Xt

− λ3,t
∂f3,t

∂Xt

− λ4,t

∑
n

∂fn4,t
∂Xt

µnt

+
∑
n

λn5,t

{
∂fn5,t
∂Xt

+
I∑
i=1

∂bni,t
∂Xt

∇i [v
n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Xt

+
I∑
i=1

∂2bni,t
∂unj,t∂Xt

∇i [v
n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂Xt

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂Xt

µnt
∆xi

]}
∀t > 0

∂L

∂Ũt
: 0 =

∂f0,t

∂Ũt
− λ1,t

∂f1,t

∂Ũt
− λ2,t

∂f2,t

∂Ũt
− λ3,t

∂f3,t

∂Ũt
− λ4,t

∑
n

∂fn4,t

∂Ũt
µnt

+
∑
n

λn5,t

{
+
∂fn5,t

∂Ũt
+

I∑
i=1

∂bni,t

∂Ũt
∇i [v

n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Ũt
+

I∑
i=1

∂2bni,t

∂unj,t∂Ũt
∇i [v

n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t

∂Ũt

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t

∂Ũt

µnt
∆xi

]}
∀t ≥ 0

∂L

∂Ût
: 0 =

∂f0,t

∂Ût
− λ1,t

∂f1,t

∂Ût
− λ2,t

∂f2,t

∂Ût
− λ3,t

∂f3,t

∂Ût
− λ4,t

∑
n

∂fn4,t

∂Ût
µnt

+
∑
n

λn5,t

{
+
∂fn5,t

∂Ût
+

I∑
i=1

∂bni,t

∂Ût
∇i [v

n
t ]

}

+
∑
n

∑
j

λn6,j,t

{
∂2fn5,t

∂unj,t∂Ût
+

I∑
i=1

∂2bni,t

∂unj,t∂Ût
∇i [v

n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t

∂Ût

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t

∂Ût

µnt
∆xi

]}
∀t ≥ 0
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∂L

∂vnt
: 0 = λn5,t

{
−ρ− 1

∆t
+

I∑
i=1

bni,t
Ibnt <0 − Ibnt >0

∆xi
−

I∑
i=1

2 (σ2
i )
n

2 (∆xi)
2

}
(128)

+λn5,t−1β
−1 1

∆t

+
I∑
i=1

λni−1
5,t bni−1

i,t

I
b
ni−1
i,t >0

∆xi
+

I∑
i=1

λni−1
5,t

(σ2
i )
n

2 (∆xi)
2

−
I∑
i=1

λni+1
5,t bni+1

i,t

I
b
ni+1
i,t <0

∆xi
+

I∑
i=1

λni+1
5,t

(σ2
i )
n

2 (∆xi)
2

+
J∑
j=1

I∑
i=1

{
λn6,j,t

{
∂bni,t
∂unj,t

Ibni,t<0 − Ibni,t>0

∆xi

}
+ λni−1

6,j,t

{
∂bni−1

i.t

∂uni−1
j,t

I
b
ni−1
i,t >0

∆xi

}}

−
J∑
j=1

I∑
i=1

λni+1
6,j,t

{
∂bni+1

i,t

∂uni+1
j,t

I
b
ni+1
i,t <0

∆xi

}
(129)

∀t ≥ 0

∂L

∂µnt
: 0 = −λ4,tf

n
4,t (130)

+λn7,t

{
1

∆t
−

I∑
i=1

[(
Ibni,t>0 − Ibni,t<0

) bni,t
∆xi

]
−

I∑
i=1

−2 (σ2
i )
n

2 (∆xi)
2

}

+

{
−

I∑
i=1

λni−1
7,t

[Ibni,t<0b
n
i,t

∆xi

]
+

I∑
i=1

(σ2
i )
n

2 (∆xi)
2

}

+

{
−

I∑
i=1

λni+1
7,t

[−Ibni,t>0b
n
i,t

∆xi

]
+

I∑
i=1

(σ2
i )
n

2 (∆xi)
2

}

+β−1λn7,t−1

{
− 1

∆t

}
∀t > 0
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∂L

∂unl,t
: 0 = −λ4,t

∂fn4,t
∂unl,t

µnt (131)

+βtλn5,t

{
∂fn5,t
∂unl,t

+
I∑
i=1

∂bni,t
∂unl,t
∇i [v

n
t ]

}

+
∑
j

λn6,t

{
∂2fn5,t

∂unj,t∂u
n
l,t

+
I∑
i=1

∂2bni,t
∂unj,t∂u

n
l,t

∇i [v
n
t ]

}

+
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂unl,t

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂unl,t

µnt
∆xi

]
∀t ≥ 0

By the individual agents’ optimality condition, line 2 of this expression is equal to 0.

4. Compare Finally, by comparing the respective discretized optimality conditions,
we show that the two procedures yield the same equilibrium conditions in the limit.
Consider first the condition for Ut. The optimize-discretize condition is given by (111),
which we reproduce here

Ut : 0 = −
(
λ2,t − λ2,t−1

∆
− %λ2,t

)
+
∂f0

∂Ut
− λ1,t

∂f1

∂Ut
− λ2,t

∂f2

∂Ut
− λ3,t

∂f3

∂Ut
− λ4,t

N∑
n=1

∂fn4
∂Ut

µnt

+
∑
n

λn5,t

{
∂fn5
∂Ut

+
I∑
i=1

∂bni
∂Ut
∇i [v

n
t ]

}

+
∑
n

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
I∑
i=1

∂2bnt
∂unj,t∂Ut

∇i [v
n
t ]

}

+
∑
n

[
−λn7,t

I∑
i=1

∇̂i

[
∂bni,t
∂Ut

µnt

]]
∀t ≥ 0
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The discretize-optimize condition (127), rearranges to

∂L

∂Ut
: 0 = −

(
λ2,t − λ2,t−1

∆t
− β−1 − 1

∆t
λ2,t−1

)
+
∂f0,t

∂Ut
− λ1,t

∂f1,t

∂Ut
− λ2,t

∂f2,t

∂Ut
− λ3,t

∂f3,t

∂Ut
− λ4,t

N∑
n=1

∂fn4,t
∂Ut

µnt

+
N∑
n=1

λn5,t

{
∂fn5,t
∂Ut

+
I∑
i=1

∂bni
∂Ut
∇i [v

n
t ]

}

+
N∑
n=1

J∑
j=1

λn6,j,t

{
∂2fn5,t
∂unj,t∂Ut

+
∂2bnt

∂unj,t∂Ut
∇i [v

n
t ]

}

+
∑
n

{
I∑
i=1

(
λn7,t − λ

ni−1
7,t

) [
Ibni,t<0

∂bni,t
∂Ut

µnt
∆xi

]
+

I∑
i=1

(
λni+1

7,t − λn7,t
) [

Ibni,t>0

∂bni,t
∂Ut

µnt
∆xi

]}
∀t ≥ 0

The second to fourth lines are evidently identical. The last lines also coincide once

we take into account the definition of ∇̂i

[
∂bni,t
∂Ut

µnt

]
=

I
b
ni+1
i,t

<0

∂b
ni+1
i,t
∂Ut

µ
ni+1
t −Ibn

i,t
<0

∂bni,t
∂Ut

µnt

∆xi
+

Ibn
i,t
>0

∂bni,t
∂Ut

µnt −Ibni−1
i,t

>0

∂b
ni−1
i,t
∂Ut

µ
ni−1
t

∆xi
.

Finally compare the first lines. Since β ≡ (1 + %∆t)−1 we have that β−1−1
∆t

= % .
The difference between these two equations hence is ‖% (λ2,t − λ2,t−1)‖. In the limit as
∆t→ 0, and provided that λ2,t features no jumps for t > 0,this difference converges to
zero.The same argument applies to the optimality conditions with respect to Xt with
the difference now proportional to ‖% (λ1,t − λ1,t−1)‖. The optimality conditions with
respect to Ût and Ũt are identical, that is, there is no difference.

Next consider the two discretized optimality conditions with respect to vnt (114) and
(128). After some rearranging they are given by
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vt (x) : 0 = −
I∑
i=1

Ibni,t>0λ
n
5,j,tb

n
i,t − I

b
ni−1
i,t >0

λni−1
5,j,t b

ni−1
i,t

∆xi
+

I
b
ni+1
i,t <0

λni+1
5,j,t b

ni+1
i,t − Ibni,t<0λ

n
5,j,tb

n
i,t

∆xi


+
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Again these, two expressions are identical up to the last time index in the last line
(λn5 ), and thus the difference is ‖% (λ5,t − λ5,t−1)‖ .

Next, consider the two discretized optimality conditions with respect to µnt (115)
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and (130). After some rearranging they are given by
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which again differ in ‖% (λ7,t − λ7,t−1)‖ .
Finally, consider the two discretized optimality conditions with respect to unl,t (x),

(116) and (131). After some rearranging they are given by
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which are identical.To summarize, whether one discretize the optimality conditions of
the planner and then discretizes them, or one discretizes the planner’s problem and
then derives the optimality conditions, one arrives to a set of optimality conditions
that coincide in everything but the timing of the multiplier in the term %λt. Provided
that multipliers experience no jumps, the difference between the two approaches goes
to 0 as ∆t→ 0. Note that this issue has nothing to do with heterogeneity.

D.3 Solving the Nuño and Thomas model using Dynare

Here we apply the “discretize-optimize” methodology outlined in Section D to the
heterogeneous-agent model introduced in Nuño and Thomas (2016). This is a model
à la Aiyagari-Bewley-Huggett with non-state-contingent long-term nominal debt con-
tracts. Finding the optimal policy in this problem requires that the central bank takes
into account not only the dynamics of the state distribution (given by the KF equation)
but also the HJB equation. Figure 8 displays the time-0 optimal policy (inflation) in
this case, compared to the one obtained through the “optimize-discretize” methodology
employed in Nuño and Thomas (2016). Optimal inflation coincides in both cases, up
to a numerical error that is reduced as we increase the number of grid points and we
reduce the time step.
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Figure 8: Time-0 optimal monetary policy using the two approaches.
Notes: The figure shows the optimal path of inflation in the Nuño and Thomas (2016) model using the “discretize-
optimize” and “optimize-discretize” methods.

94


